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Abstract
Public infrastructure-as-a-service clouds, such as Ama-
zon EC2 and Microsoft Azure allow arbitrary clients
to run virtual machines (VMs) on shared physical in-
frastructure. This practice of multi-tenancy brings
economies of scale, but also introduces the threat of
malicious VMs abusing the scheduling of shared re-
sources. Recent works have shown how to mount cross-
VM side-channel attacks to steal cryptographic secrets.
The straightforward solution is hard isolation that dedi-
cates hardware to each VM. However, this comes at the
cost of reduced efficiency.

We investigate the principle of soft isolation: reduce
the risk of sharing through better scheduling. With ex-
perimental measurements, we show that a minimum run
time (MRT) guarantee for VM virtual CPUs that lim-
its the frequency of preemptions can effectively prevent
existing Prime+Probe cache-based side-channel attacks.
Through experimental measurements, we find that the
performance impact of MRT guarantees can be very low,
particularly in multi-core settings. Finally, we integrate a
simple per-core CPU state cleansing mechanism, a form
of hard isolation, into Xen. It provides further protection
against side-channel attacks at little cost when used in
conjunction with an MRT guarantee.

1 Introduction

Public infrastructure-as-a-service (IaaS) clouds enable
the increasingly realistic threat of malicious customers
mounting side-channel attacks [35, 46]. An attacker ob-
tains tenancy on the same physical server as a target, and
then uses careful timing of shared hardware components
to steal confidential data. Damaging attacks enable theft
of cryptographic secrets by way of shared per-core CPU
state such as L1 data and instruction caches [46], de-
spite customers running within distinct virtual machines
(VMs).

A general solution to prevent side-channel attacks is
hard isolation: completely prevent sharing of particu-
lar sensitive resources. Such isolation can be obtained
by avoiding multi-tenancy, new hardware that enforces
cache isolation [42, 44], cache coloring [34, 36], or soft-
ware systems such as StealthMem [22]. However, hard
isolation reduces efficiency and raises costs because of
stranded resources that are allocated to a virtual machine
yet left unused.

Another approach has been to prevent attacks by
adding noise to the cache. For example, in the Düppel
system the guest operating system protects against CPU
cache side-channels by making spurious memory re-
quests to obfuscate cache usage [47]. This incurs over-
heads, and also requires users to identify the particular
processes that should be protected.

A final approach has been to interfere with the ability
to obtain accurate measurements of shared hardware by
removing or obscuring time sources. This can be done
by removing hardware timing sources [28], reducing the
granularity of clocks exposed to guest VMs [41], allow-
ing only deterministic computations [6], or using repli-
cation of VMs to normalize timing [26]. These solutions
either have significant overheads, as in the last solution,
or severely limit functionality for workloads that need
accurate timing.

Taking a step back, we note that in addition to shar-
ing resources and having access to fine-grained clocks,
shared-core side-channel attacks also require the ability
to measure the state of the cache frequently. For example,
Zhang et al.’s cross-VM attack on ElGamal preempted
the victim every 16 µs on average [46]. With less fre-
quent interruptions, the attacker’s view of how hardware
state changes in response to a victim becomes obscured.
Perhaps surprisingly, then, is the lack of any investigation
of the relationship between CPU scheduling policies and
side-channel efficacy. In particular, scheduling may en-
able what we call soft isolation: limiting the frequency
of potentially dangerous cross-VM interactions. (We use
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the adjective soft to indicate allowance of occasional fail-
ures, analogous to soft real-time scheduling.)

Contributions. We evaluate the ability of system
software to mitigate cache-based side-channel attacks
through scheduling. In particular, we focus on the type of
mechanism that has schedulers ensure that CPU-bound
workloads cannot be preempted before a minimum time
quantum, even in the presence of higher priority or in-
teractive workloads. We say that such a scheduler offers
a minimum run time (MRT) guarantee. Xen version 4.2
features an MRT guarantee mechanism for the stated pur-
pose of improving the performance of batch workloads
in the presence of interactive workloads that thrash their
cache footprint [11]. A similar mechanism also exists in
the Linux CFS scheduler [29].

Cache-based side-channel attacks are an example of
such highly interactive workloads that thrash the cache.
One might therefore hypothesize that by reducing the
frequency of preemptions via an MRT guarantee, one
achieves a level of soft isolation suitable for mitigating,
or even preventing, a broad class of shared-core side-
channel attacks. We investigate this hypothesis, provid-
ing the first analysis of MRT guarantees as a defense
against cache-based side-channel attacks. With detailed
measurements of cache timing, we show that even an
MRT below 1 ms can defend against existing attacks.

But an MRT guarantee can have negative affects as
well: latency-sensitive workloads may be delayed for the
minimum time quantum. To evaluate the performance
impact of MRT guarantees, we provide extensive mea-
surements with a corpus of latency-sensitive and batch
workloads. We conclude that while worst-case latency
can be hindered by large MRTs in some cases, in prac-
tice Xen’s existing core load-balancing mechanisms mit-
igate the cost by separating CPU-hungry batch work-
loads from latency-sensitive interactive workloads. As
just one example, memcached, when running alongside
batch workloads, suffers only a 7% overhead on 95th-
percentile latency for a 5 ms MRT compared to no MRT.
Median latency is not affected at all.

The existing MRT mechanism only protects CPU-
hungry programs that do not yield the CPU or go idle.
While we are aware of no side-channel attacks that ex-
ploit such victim workloads, we nevertheless investigate
a simple and lightweight use of CPU state cleansing to
protect programs that quickly yield the CPU by obfus-
cating predictive state. By implementing this in the hy-
pervisor scheduler, we can exploit knowledge of when
a cross-VM preemption occurs and the MRT has not
been exceeded. This greatly mitigates the overheads of
cleansing, attesting to a further value to soft-isolation
style mechanisms. In our performance evaluation of this
mechanism, we see only a 10–50 µs worse-case overhead

on median latency due to cleansing while providing pro-
tection for all guest processes within a VM (and not just
select ones, as was the case in Düppel). In contrast, other
proposed defenses have similar (or worse) overhead but
require new hardware, new guest operating systems, or
restrict system functionality.

Outline. In the next section, we provide background
on cache-based side-channel attacks and existing defense
mechanisms. In Section 3 we describe the Xen hyper-
visor scheduling system, its MRT mechanism, and the
principle of soft isolation. In Section 4 we measure the
effectiveness of MRT as a defense. Section 5 shows the
performance of Xen’s MRT mechanism, and Section 6
describes combining MRT with cache cleansing.

2 Background and Motivation

Our work is motivated by the increasing importance
of threats posed by side-channel attacks in multi-tenant
clouds, in which VMs from multiple customers run on
the same physical hardware. We focus on cache-based
side-channels, which are dangerous because they can
leak secret information such as encryption keys and have
been demonstrated between virtual machines in a cloud
environment [46].

Side-channel attacks. We can delineate side-channel
attacks into three classes: time-, trace-, and access-
driven. Time-driven attacks arise when an attacker can
glean useful information via repeated observations of the
(total) duration of a victim operation, such as the time
to compute an encryption (e.g., [5, 7, 10, 16, 24]). Trace-
driven attacks work by having an attacker continuously
monitor a cryptographic operation, for example via elec-
tromagnetic emanations or power usage leaked to the at-
tacker (e.g., [14, 23, 33].

We focus on access-driven side-channel attacks, in
which the attacker is able to run a program on the same
physical server as the victim. These abuse stateful com-
ponents of the system shared between attacker and victim
program, and have proved damaging in a wide variety of
settings, including [3, 15, 31, 32, 35, 45]. In the cross-
process setting, the attacker and victim are two separate
processes running within the same operating system. In
the cross-VM setting, the attacker and victim are two
separate VMs running co-resident (or co-tenant) on the
same server. The cross-VM setting is of particular con-
cern for public IaaS clouds, where it has been shown that
an attacker can obtain co-residence of a malicious VM
on the same server as a target [35]

Zhang, Juels, Reiter, and Ristenpart (ZJRR) [46]
demonstrated the first cross-VM attack with sufficient

2



granularity to extract ElGamal secret keys from the vic-
tim. They use a version of the classic Prime+Probe tech-
nique [31]: the attacker first primes the cache (instruc-
tion or data) by accessing a fixed set of addresses that
fill the entire cache. He then yields the CPU, causing
the hypervisor to run the victim, which begins to evict
the attacker’s data or instructions from various cache.
As quickly as possible, the attacker preempts the vic-
tim, and then probes the cache by again accessing a set
of addresses that cover the entire cache. By measuring
the speed of each cache access, the attacker can deter-
mine which cache lines were displaced by the victim, and
hence learn some information about which addresses the
victim accessed.

The ZJRR attack builds off a long line of cross-
process attacks (c.f., [3, 4, 15, 31, 32]) all of which tar-
get per-core microarchitectural state. When simultane-
ous multi-threading (SMT) is disabled (as is typical in
cloud settings), such per-core attacks require that the at-
tacker time-shares a CPU core with the victim. In or-
der to obtain frequent observations of shared state, at-
tacks abuse scheduler mechanisms that prioritize interac-
tive workloads in order to preempt the victim. For exam-
ple, ZJRR use inter-processor interrupts to preempt every
16 µs on average. In their cross-process attack, Bangerter
et al. abuse the Linux process scheduler [15].

Fewer attacks thus far have abused (what we call) off-
core state, such as last-level caches used by multiple
cores. Some off-core attacks are coarse-grained, allow-
ing attackers to learn only a few bits of information (e.g.,
whether the victim is using the cache or not [35]). An
example of a fine-grained off-core attack is the recent
Flush+Reload attack of Yarom and Falkner [45]. Their
attack extends the Bangerter et al. attack to instead target
last-level caches on some modern Intel processors and
has been shown to enable very efficient theft of cryp-
tographic keys in both cross-process and cross-VM set-
tings. However, like the Bangerter et al. attack, it relies
on the attacker and victim having shared memory pages.
This is a common situation for cross-process settings,
but also arises in cross-VM settings should the hypervi-
sor perform memory page deduplication. While several
hypervisors implement deduplication, thus far no IaaS
clouds are known to use the feature and so are not vul-
nerable.

Threat model and goals. Our goal is to mitigate or
completely prevent cross-VM attacks relevant to mod-
ern public IaaS cloud computing settings. We assume
the attacker and victim are separate VMs co-resident on
the same server running a Type I hypervisor. The at-
tacker controls the entire VM, including the guest oper-
ating system and applications, but the hypervisor is run
by the cloud provider and is trusted. SMT and mem-

ory deduplication are disabled. In this context, the best
known attacks rely on:

(1) Shared per-core state that is accessible to the at-
tacker and that has visibly different behavior based
on its state, such as caches and branch predictors.

(2) The ability to preempt the victim VM at short inter-
vals to allow only a few changes to that hardware
state.

(3) Access to a system clock with enough resolution to
distinguish micro-architectural events (e.g., cache
hits and misses).

These conditions are all true in contemporary multi-
tenant cloud settings, such as Amazon’s EC2. Defenses
can target any of these dependencies, and we discuss
some existing approaches next.

Prior defenses. Past work on defenses against such
side-channel attacks identified the above requirements
for successful side-channels and tried to obviate one or
more of the above necessary conditions for attacks. We
classify and summarize these techniques below.

An obvious solution is to prevent an attacker and vic-
tim from sharing hardware, which we call hard isolation.
Partitioning the cache in hardware or software prevents
its contents from being shared [22, 34, 36, 42]. This re-
quires special-purpose hardware or loss of various use-
ful features (e.g., large pages) and thus limits the adop-
tion in a public cloud environment. Assigning VMs to
run on different cores avoids sharing of per-core hard-
ware [21, 27, 38], and assigning them to different servers
avoids sharing of any system hardware [35]. A key chal-
lenge here is identifying an attacker and victim in order
to separate them; otherwise this approach reduces to us-
ing dedicated hardware for each customer, reducing uti-
lization and thus raising the price of computing.

Another form of hard isolation is to reset hardware
state when switching from one VM to another. For
example, flushing the caches on every context switch
prevents the cache state from being shared between
VMs [47]. However, this can decrease performance of
cache-sensitive workloads both because of the time taken
to do the flush and the loss in cache efficiency.

Beyond hard isolation are approaches that modify
hardware to add noise, either in the timing or by obfus-
cating the specific side-channel information. The for-
mer can be accomplished by removing or modifying
timers [26, 28, 41] to prevent attackers from accurately
distinguishing between microarchitectural events, such
as a cache hit and a miss. For example, StopWatch [26]
removes all timing side-channels and incurs a worse-case
overhead of 2.8x for network intensive workloads. Spe-
cialized hardware-support could also be used to obfus-
cate and randomize processor cache usage [25, 44]. All
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of these defenses either result in loss of high-precision
timer or require hardware changes.

Similarly, one can allocate exclusive memory re-
sources for a sensitive process [22] or add noise to ob-
fuscate its hardware usage [47]. Similarly, programs can
be changed to obfuscate access patterns [8,9]. These ap-
proaches are not general-purpose, as they rely on iden-
tifying and fixing all security-relevant programs. Worst-
case overheads for these mechanisms vary from 6–7%.

Several past efforts attempt to minimize performance
interference between workloads (e.g., Q-clouds [30] and
Bubble-Up [27], but do not consider adversarial work-
loads such as side-channel attacks.

3 MRT Guarantees and Soft Isolation

We investigate a different strategy for mitigating per-core
side-channels: adjusting hypervisor core scheduling to
limit the rate of preemptions. This targets the second
requirement of attacks such as ZJRR. Such a scheduler
would realize a security design principle that we call
soft isolation1: limiting the frequency of potentially dan-
gerous interactions between mutually untrustworthy pro-
grams. Unlike hard isolation mechanisms, we will allow
shared state but attempt to use scheduling to limit the
damage. Ideally, the flexibility of soft isolation will ease
the road to deployment, while still significantly mitigat-
ing or even preventing side-channel attacks. We expect
that soft isolation can be incorporated as a design goal
in a variety of resource management contexts. That said,
we focus in the rest of this work on CPU core scheduling.

Xen scheduling. Hypervisors schedule virtual ma-
chines much like an operating system schedules pro-
cesses or threads. Just as a process may contain mul-
tiple threads that can be scheduled on different proces-
sors, a virtual machine may consist of multiple virtual
CPUs (VCPUs) that can be scheduled on different phys-
ical CPUs (PCPUs). The primary difference between
hypervisor and OS scheduling is that the set of VCPUs
across all VMs is relatively static, as VM and VCPU cre-
ation/deletion is a rare event. In contrast, processes and
threads are frequently created and deleted.

Hypervisor schedulers provide low-latency response
times to interactive tasks by prioritizing VCPUs that
need to respond to an outstanding event. The events
are typically physical device or virtual interrupts from
packet arrivals or completed storage requests. Xen’s
credit scheduler normally lets a VCPU run for 30ms be-
fore preempting it so another VCPU can run. However,

1The term “soft” is inherited from soft real-time systems, where one
similarly relaxes requirements (in that case, time deadlines, in our case,
isolation).

choose next 
VCPU!

schedule event!

Is next same 
as prev 
VCPU?!

Is prev_runtime 
< ratelimit_us?!

No!

continue running 
prev VCPU!

Yes!

Yes!

switch to next 
VCPU!

No!

set event timer to 
(ratelimit_us - prev_runtime)!

Figure 1: Logic underlying the Xen MRT mechanism.

when a VCPU receives an event, it may receive boost
priority, which allows it to preempt non-boosted VCPUs
and run immediately.

VCPUs are characterized by Xen as either interactive
(or latency-sensitive) if they are mostly idle until an in-
terrupt comes in, at which point they execute for a short
period and return to idle. Typical interactive workloads
are network servers that execute in response to an incom-
ing packet. We refer to VCPUs that are running longer
computations as batch or CPU-hungry, as they typically
execute for longer than the scheduler’s time slice (30ms
for Xen) without idling.

Schedulers can be work conserving, meaning that they
will never let a PCPU idle if a VCPU is ready to run,
or non-work conserving, meaning that they enforce strict
limits on how much time a VCPU can run. While work-
conserving schedulers can provide higher utilization,
they also provide worse performance isolation: if one
VCPU goes from idle to CPU-hungry, another VCPU on
the same PCPU can see its share of the PCPU drop in
half. As a result, many cloud environments use non-work
conserving schedulers. For example, Amazon EC2’s
m1.small instances are configured to be non-work con-
serving, allocating roughly 40% of a PCPU (called cap
in Xen) to each VCPU of a VM.

Since version 4.2, Xen has included a mechanism
for rate limiting preemptions of a VCPU; we call this
mechanism a minimum run-time (MRT) guarantee. The
logic underlying this mechanism is shown as a flowchart
in Figure 1. Xen exposes a hypervisor parameter,
ratelimit us (the MRT value) that determines the
minimum time any VCPU is guaranteed to run on a
PCPU before being available to be context-switched out
of the PCPU by another VCPU. One could also rate limit
preemptions in other ways, but an MRT guarantee is sim-
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ple to implement. Note that the MRT is not applicable to
VMs that voluntarily give up the CPU, which happens
when the VM goes idle or waits for an event to occur.

As noted previously, the original intent of Xen’s MRT
was to improve performance for CPU-hungry workloads
run in the presence of latency-sensitive workloads: each
preemption pollutes the cache and other microarchitec-
tural state, slowing the CPU-intensive workload

Case study. We experimentally evaluate the Xen MRT
mechanism as a defense against side-channel leakage
by way of soft isolation. Intuitively, the MRT guaran-
tee rate-limits preemptions and provides an attacker less
granularity in his observations of the victim’s use of per-
CPU-core resources. Thus one expects that increased
rate-limits decreases vulnerability. To be deployable,
however, we must also evaluate the impact of MRT guar-
antees on benign workloads. In the next two sections we
investigate the following questions:

(1) How do per-core side-channel attacks perform un-
der various MRT values? (Section 4)

(2) How does performance vary with different MRT
values? (Section 5)

4 Side-channels under MRT Guarantees

We experimentally evaluate the MRT mechanism as a de-
fense against side-channel leakage for per-core state. We
focus on cache-based leakage.

Experimental setup. Running on the hardware setup
shown in Figure 2, we configure Xen to use two VMs, a
victim and attacker. Each has two VCPUs, and we pin
one attacker VCPU and one victim VCPU to each of two
PCPUs (or cores). We use a non-work-conserving sched-
uler whose configuration is shown in Figure 9. This is a
conservative version of the ZJRR attack setting, where
instead the VCPUs were allowed to float — pinning the
victims to the same core only makes it easier for the at-
tacker. The hardware and Xen configurations are similar
to the configuration used in EC2 m1.small instances [12].
(Although Amazon does not make their precise hardware
configurations public, we can still gain some insight into
the hardware on which an instance is running by looking
at sysfs and the CPUID instruction.)

Cache-set timing profile. We start by fixing a simple
victim to measure the effects of increasing MRT guaran-
tees. We have two functions that each access a (distinct)
quarter of the instruction cache (I-cache)2. The victim

2Our test machine has a 32 KB, 4-way set associative cache with
64-byte lines. There are 128 sets.

Machine Configuration Intel Xeon E5645, 2.40GHz
clock, 6 cores in one package

Memory Hierarchy Private 32 KB L1 (I- and D-
cache), 256 KB unified L2,
12 MB shared L3 and 16 GB
main memory.

Xen Version 4.2.1
Xen Scheduler Credit Scheduler 1
Dom0 OS Fedora 18, 3.8.8-

202.fc18.x86 64
Guest OS Ubuntu 12.04.3, Linux 3.7.5

Figure 2: Hardware configuration in local test bed.

alternates between these two functions, accessing each
quarter 500 times. This experiment models a simple I-
cache side-channel where switching from one quarter to
another leaks some secret information (we call any such
leaky function a sensitive operation). Executing the 500
access to a quarter of the I-cache requires approximately
100µs when run in isolation.

We run this victim workload pinned to a victim VCPU
that is pinned to the same PCPU as the attacker VCPU.
The attacker uses the IPI-based Prime+Probe technique3

and measures the time taken to access each I-cache set,
similar to ZJRR [46].

Figure 3 shows heat maps of the timings of the vari-
ous I-cache sets as taken by the Prime+Probe attacker,
for various MRT values between 0 (no MRT) and 5 ms.
Darker colors are longer access times, indicating con-
flicting access to the cache set by the victim. One can
easily see the simple alternating pattern of the victim as
we move up the y-axis of time in Figure 3(b). Also note
that this is different from an idle victim under zero-MRT
shown in Figure 3(a). With no MRT, the attacker makes
approximately 40 observations of each cache set, allow-
ing a relatively detailed view of victim behavior.

As the MRT value increases we see the loss of res-
olution by the attacker as its observations become less
frequent than the alternations of the victim. At an MRT
of 100 µs the pattern is still visible, but noisier. Although
the victim functions run for 100 µs, the prime+probe at-
tacker slows downs the victim by approximately a factor
of two, allowing the pattern to be visible with a 100 µs
MRT. When the MRT value is set to 1 ms the attacker
obtains no discernible information on when the switch-
ing between each I-cache set happens.

In general, an attacker can observe victim behavior
that occurs at a lower frequency than the attacker’s pre-
emptions. We modify the victim program to be 10x

3Note that the attacker requires two VCPUs, one measuring the I-
cache set timing whenever interrupted and the other issuing the IPIs
to wake up the other VCPU. The VCPU issuing IPIs is pinned to a
different PCPU.
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(a) Zero-MRT w/ Idle Victim
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(b) Zero-MRT
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(c) 100µs-MRT
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(d) 1ms-MRT

Figure 3: Heatmaps of I-cache set timing as observed by a prime-probe attacker. Displayed values are from a larger trace of
10,000 timings. (a) Timings for idle victim and no MRT. (b)–(d) Timings for varying MRT values with the victim running.

slower (where each function takes approximately 1 ms
standalone). Figure 4 shows the result for this experi-
ment. With a 1 ms MRT, we observe the alternating pat-
tern. When the MRT is raised to 5 ms, which is longer
than the victim’s computation (≈ 2 ms), no pattern is ap-
parent. Thus, when the MRT is longer than the execution
time of a security-critical function this side-channel fails.

While none of this proves lack of side-channels, it
serves to illustrate the dynamics between side-channels,
duration of sensitive victim operations, and the MRT:
as the MRT increases, the frequency with which an at-
tacker can observe the victim’s behavior decreases, and
the signal and hence leaked information decreases. All
this exposes the relationship between the speed of a sen-
sitive operation, the MRT, and side-channel availability
for an attacker. In particular, very long operations (e.g.,
longer than the MRT) may still be spied upon by side-
channel attackers. Also, infrequently accessed but sen-
sitive memory accesses may leak to the attacker. We
hypothesis that at least for cryptographic victims, even
moderate MRT values on the order of a handful of mil-

liseconds are sufficient to prevent per-core side-channel
attacks. We next look, therefore, at how this relationship
plays out for cryptographic victims.

ElGamal victim. We fix a victim similar to that tar-
geted by ZJRR. The victim executes the modular expo-
nentiation implementation from libgcrypt 1.5.0 using a
2048-bit exponent, base and modulus, in a loop. Pseudo-
code of the exponentiation algorithm appears in Figure 5.
One can see that learning the sequence of operations
leaks the secret key values: if the code in lines 7 and
8 is executed, the bit is a 1; otherwise it is a zero. We in-
strument libgcrypt to write the current bit being operated
upon to a memory page shared with the attacker, allow-
ing us to determine when preemptions occur relative to
operations within the modular exponentiation.

For no MRT guarantee, we observe that the attacker
can preempt the victim many times per individual square,
multiply, or reduce operation (as was also reported by
ZJRR). With MRT guarantees, the rate of preemptions
drops so much that the attacker only can interrupt once
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(b) 5ms-MRT

Figure 4: Heatmaps of I-cache set timings as observed by a prime-probe attacker for 10x slower victim computations.
Displayed values are from a larger trace of 9,200 timings.

SQUAREMULT(x,e,N):
1: Let en, ...,e1 be the bits of e
2: y← 1
3: for i = n down to 1 do
4: y← SQUARE(y)
5: y← MODREDUCE(y,N)
6: if ei = 1 then
7: y← MULT(y,x)
8: y← MODREDUCE(y,N)
9: end if

10: end for
11: return y

Figure 5: Modular exponentiation algorithm used in
libgcrypt version 1.5.0. Note that the control flow followed
when ei = 1 is lines 4→ 5→ 6→ 7→ 8 and when ei = 0 is
lines 4→ 5; denoted by the symbols 1 and 0, respectively.

every several iterations of the inner loop. Figure 6 gives
the number of bits operated on between attacker preemp-
tions for various MRT values. Figure 7 gives the number
of preemptions per entire modular exponentiation com-
putation. We see that for higher MRT values, the rate
of preemption per call to the full modular exponentiation
reduces to just a handful. The ZJRR attack depends on
multiple observations per operation to filter out noise, so
even at the lowest MRT value of 100 µs, with 4–14 op-
erations per observation, the ZJRR attack fails. In the
full version [40], we discuss how one might model this
leakage scenario formally and evidence a lack of any of
a large class of side-channel attacks.

AES victim. We evaluate another commonly exploited
access-driven side-channel victim, AES, which leaks se-
cret information via key-dependent indexing into tables
stored in the L1 data cache [15, 31]. The previous at-

Xen MRT ( ms) Avg. ops/run Min. ops/run
0 0.096 0

0.1 14.1 4
0.5 49.0 32
1.0 92.6 68
2.0 180.7 155
5.0 441.2 386

10.0 873.1 728

Figure 6: The average and minimal number of ElGamal se-
cret key bits operated upon between two attacker preemp-
tions for a range of MRT values. Over runs with 40K pre-
emptions.

Xen MRT Preemptions per function call
(ms) Min Median Max

0 3247 19940 20606
0.1 74 155 166
0.5 22 42 47
1.0 16 22 25
2.0 10 11 13
5.0 0 4 6

10.0 1 2 3

Figure 7: Rate of preemption with various MRT. Here the
function called is the Modular-Exponentiation implementation
in libgcrypt with a 2048 bit exponent. Note that for zero MRT
the rate of preemption is very high that victim computation in-
volving a single bit was preempted multiple times.

tacks, all in the cross-process setting, depend on observ-
ing a very small number of cache accesses to obtain a
clear signal of what portion of the table was accessed by
the victim. Although there has been no known AES at-
tack in the cross-VM setting (at least when deduplication
is turned off, otherwise see [19]), we evaluate effective-
ness of MRT against the best known IPI Prime+Probe
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spy process due to ZJRR. In particular, we measured the
number of private data-cache misses possibly observable
by this Prime+Probe attacker when the victim is running
AES encryption in a loop.

To do so, we modified the Xen scheduler to log the
count of private-cache misses (in our local testbed both
L1 and L2 caches are private) experienced by any VCPU
during a scheduled time slice. This corresponds to the
number of data-cache misses an attacker could ideally
observe. Figure 8 shows the cumulative distribution of
the number of L2-data cache misses (equivalently, pri-
vate data-cache loads) during a time slice of the victim
running OpenSSL-AES. We can see that under no or
lower MRTs the bulk of time slices suffer only a few
tens of D-cache misses that happen between two back-
to-back preemptions of the attacker. (We note that this is
already insufficient to perform prior attacks.) The num-
ber of misses increases to close to 200 for an MRT value
of 5 ms. This means that the AES process is evicting its
own data, further obscuring information from a would-
be attacker. Underlying this is the fact that the number of
AES encryptions completed between two back-to-back
preemptions increases drastically with the MRT: found
that thousands to ten thousands AES block-encryptions
were completed between two preemptions when MRT
was varied from 100 µs to 5 ms, respectively.

Summary. While side channels pose a significant
threat to the security of cloud computing, our measure-
ments in this section show that, fortunately, the hyper-
visor scheduler can help. Current attacks depend on

frequent preemptions to make detailed measurements of
cache contents. Our measurements show that even de-
laying preemption for a fraction of millisecond prevents
known attacks. While this is not proof that future attacks
won’t be found that circumvent the MRT guarantee, it
does strongly suggest that deploying such a soft-isolation
mechanism will raise the bar for attackers. This leaves
the question of whether this mechanism is cheap to de-
ploy, which we answer in the next section.

Note that we have focused on using the MRT mech-
anism for CPU and, indirectly, per-core hardware re-
sources that are shared between multiple VMs. But
rate-limiting-type mechanisms may be useful for other
shared devices like memory, disk/SSD, network, and any
system-level shared devices which suffer from a similar
access-driven side-channels. For instance, a timed disk
read could reveal user’s disk usage statistics like relative
disk head positions [20]. Fine-grained sharing of the disk
across multiple users could leak sensitive information via
such a timing side-channel. Reducing the granularity of
sharing by using MRT-like guarantees in the disk sched-
uler (e.g., servicing requests from user for at least Tmin,
minimum service time, before serving requests from an-
other user) would result in a system with similar secu-
rity guarantees as above, eventually making such side-
channels harder to exploit. Further research is required
to analyze the end-to-end performance impact of such
a mechanism for various shared devices and schedulers
that manage them.

5 Performance of MRT Mechanism

The analysis in the preceding section demonstrates that
MRT guarantees can meaningfully mitigate a large class
of cache-based side-channel attacks. The mitigation be-
comes better as MRT increases. We therefore turn to de-
termining the maximal MRT guarantee one can fix while
not hindering performance.

5.1 Methodology

We designed experiments to quantify the negative and
positive effects of MRT guarantees as compared to a
baseline configuration with no MRT (or zero MRT). Our
testbed configuration uses the same hardware as in the
last section and the Xen configurations are summarized
in Figure 9. We run two DomU VMs each with a single
VCPU. The two VCPUs are pinned to the same PCPU.
Pinning to the same PCPU serves to isolate the effect of
the MRT mechanism. The management VM, Dom0, has
6 VCPUs, one for each PCPU (a standard configuration
option). The remaining PCPUs in the system are other-
wise left idle.

8



Work-conserving configuration
Dom0 6 VCPU / no cap / weight 256
DomU 1 VCPU / 2 GB memory / no

cap / weight 256
Non-work-conserving configuration

Dom0 6 VCPU / no cap / weight 512
DomU 1 VCPU / 2 GB memory /

40% cap / weight 256

Figure 9: Xen configurations used for performance experi-
ments.

CPU-hungry Workloads
Workload Description
SPECjbb Java-based application server [37]
graph500 Graph analytics workload [1] with scale

of 18 and edge factor of 20.
mcf , sphinx,
bzip2

SpecCPU2006 cache sensitive bench-
marks [17]

Nqueens Microbenchmark solving n-queens
problem

CProbe Microbenchmark that continuously
trashes L2 private cache.

Latency-sensitive Workloads
Workload Description
Data-Caching Memcached from Cloud Suite-2 with

twitter data set scaled by factor of 5 run
for 3 minutes with rate of 500 requests
per second [13].

Data-Serving Cassandra KV-store from Cloud Suite-2
with total of 100K records4 [13]

Apache Apache webserver, HTTPing
client [18], single 4 KB file at 1 ms
interval.

Ping Ping command at 1 ms interval.
Chatty-CProbe One iteration of CProbe every 10 µs.

Figure 10: Workloads used in performance experiments.

We use a mix of real-world applications and mi-
crobenchmarks in our experiments (shown in Figure 10).
The microbenchmark CProbe simulates a perfectly
cache-sensitive workload that continuously overwrites
data to the (unified) L2 private cache, and Chatty-CProbe
is its interactive counterpart that overwrites the cache ev-
ery 10 µs and then sleeps. We also run the benchmarks
with an idle VCPU (labeled Idle below).

5.2 Latency Sensitivity
The most obvious potential performance downside of a
MRT guarantee is increased latency: interactive work-
loads may have to wait before gaining access to a
PCPU. We measure the negative effects of MRT guar-
antees by running latency-sensitive workloads against
Nqueens (a CPU-bound program with little memory ac-
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Figure 11: 95th Percentile Latency of Various Latency Sen-
sitive Workloads. Under non-work-conserving scheduling.

cess). Figure 11 shows the 95th percentile latency for the
interactive workloads. The baseline results are shown as
a MRT of 0 on the X-axis. As expected, the latency is ap-
proximately equal to the MRT for almost all workloads
(Apache has higher latency because it requires multiple
packets to respond, so it must run multiple times to com-
plete a request). Thus, in the presence of a CPU-intensive
workload and when pinned to the same PCPU, the MRT
can have a large negative impact on interactive latency.

As the workloads behave essentially similarly, we now
focus on just the Data-Caching workload. Figure 12
shows the response latency when run against other work-
loads. For the two CPU-intensive workloads, CProbe
and Nqueens, latency increases linearly with the MRT.
However, when run against either an idle VCPU or
Chatty-CProbe, which runs for only a short period, la-
tency is identical across all MRT values. Thus, the MRT
has little impact when an interactive workload runs alone
or it shares the PCPU with another interactive workload.

We next evaluate the extent of latency increase.
Figure 13 shows the 25th, 50th, 75th, 90th, 95th and 99th

percentile latency for Data-Caching. At the 50th per-
centile and below, latency is the same as with an idle
VCPU. However, at the 75th latency rises to half the
MRT, indicating that a substantial fraction of requests are
delayed.

We repeated the above experiments for the work-
conserving setting, and the results were essentially the
same. We omit them for brevity. Overall, we find that
enforcing an MRT guarantee can severely increase la-
tency when interactive VCPUs share a PCPU with CPU-
intensive workloads. However, they have limited impact
when multiple interactive VCPUs share a PCPU.
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5.3 Batch Efficiency

In addition to measuring the impact on latency-sensitive
workloads, we also measure the impact of MRT guaran-
tees on CPU-hungry workloads. The original goal of the
MRT mechanism was to reduce frequent VCPU context-
switches and improve performance of batch workloads.
We pin a CPU-hungry workload to a PCPU against com-
peting microbenchmarks.

Figure 14 shows the effect of MRT values on the
graph500 workload when run alongside various compet-
ing workloads. Because this is work-conserving schedul-
ing, the runtime of graph500 workload increases by
roughly a factor of two when run alongside Nqueens and
CProbe as compared to Idle, because the share of the
PCPU given to the VCPU running graph500 drops by
one half. The affect of MRT is more pronounced when

looking running alongside Chatty-CProbe, the workload
which tries to frequently interrupt graph500 and trash its
cache. With no MRT guarantee, this can double the run-
time of a program. But with a limit of only 0.5 ms, per-
formance is virtually the same as with an idle VCPU,
both because Chatty-CProbe uses much less CPU and
because it trashes the cache less often.

With a non-work-conserving scheduler, the picture is
significantly different. Figure 15 shows the performance
of three batch workloads when run alongside a variety
of other workloads, for various MRT values. First, we
observe that competing CPU-bound workloads such as
Nqueens and CProbe do not significantly affect the per-
formance of CPU-bound applications, even in the case of
CProbe that trashes the cache. This occurs because the
workloads share the PCPU at coarse intervals (30 ms),
so the cache is only trashed once per 30 ms period. In
contrast, when run with the interactive workload Chatty-
CProbe, applications suffer up to 4% performance loss,
which increases with longer MRT guarantees. Investi-
gating the scheduler traces showed that under zero MRT
the batch workload enjoyed longer scheduler time slices
of 30 ms compared to the non-zero MRT cases. This
was because under zero MRT highly interactive Chatty-
CProbe quickly exhausted Xen’s boost priority. After
this, Chatty-CProbe could not preempt and waited un-
til the running VCPU’s 30 ms time slice expires. With
longer MRT values, though, Chatty-CProbe continues to
preempt and degrade performance more consistently.

Another interesting observation in Figure 15 is that
when the batch workloads share a PCPU with an idle
VCPU, they perform worse than when paired with
Nqueens or CProbe. Further investigation revealed that
an idle VCPU is not completely idle but wakes up at
regular intervals for guest timekeeping reasons. Over-
all, under non-work-conserving settings, running a batch
VCPU with any interactive VCPU (even an idle one) is
worse than running with another batch VCPU (even one
like CProbe that trashes the cache).

5.4 System Performance

The preceding sections showed the impact of MRT guar-
antees when both applications are pinned to a single
core. We next analyze the impact of the Xen scheduler’s
VCPU placement policies, which choose the PCPU on
which to schedule a runnable VCPU. We configure the
system with 4 VMs each with 2 VCPUs to run on 4 PC-
PUs under a non-work conserving scheduler. We run
three different sets of workload mixes, which together
capture a broad spectrum of competing workload com-
binations. Together with a target workload running on
both VCPUs of a single VM, we run: (1) All-Batch —
consisting of worst-case competing CPU-hungry work-
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Figure 14: Average runtime of graph500 workload when run
alongside various competing workloads and under work-
conserving scheduling. Averaged over 5 runs.

load (CProbe); (2) All-Interactive — consisting of worst-
case competing interactive workload (Chatty-CProbe);
and (3) Batch & Interactive — where half of other VC-
PUs run Chatty-CProbe and half CProbe. We compare
the performance of Xen without MRT to running with
the default 5ms limit. The result of the experiment is
shown in Figure 16. For interactive workloads, the fig-
ure shows the relative 95th percentile latency, while for
CPU-hungry workloads it shows relative execution time.

On average across the three programs and three com-
peting workloads, latency-sensitive workloads suffered
on average of only 4% increase in latency with the MRT
guarantee enabled. This contrasts sharply with the 5-fold
latency increase in the pinned experiment discussed ear-
lier. CPU-hungry workloads saw their performance im-
prove by 0.3%. This makes sense given the results in the
preceding section, which showed that an MRT guarantee
offers little value to batch jobs in a non-work-conserving
setting.

To understand why the latency performance is so much
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Figure 16: Normalized Performance in a non-work-
conserving configuration with 5 ms MRT. Normalized to per-
formance under zero-MRT case. The left three workloads re-
port 95th percentile latency and the right three report runtime,
averaged across 5 runs. In both cases lower is better.

better than our earlier results would suggest, we analyzed
a trace of the scheduler’s decisions. With the non-work-
conserving setting, Xen naturally segregates batch and
interactive workloads. When an interactive VCPU re-
ceives a request, it will migrate to an idle PCPU rather
than preempt a PCPU running a batch VCPU. As the
PCPU running interactive VCPUs is often idle, this leads
to coalescing the interactive VCPUs on one or more PC-
PUs while the batch VCPUs share the remaining PCPUs.

5.5 Summary

Overall, our performance evaluation shows that the
strong security benefits described the in Section 4 can
be achieved at low cost in virtualized settings. Prior
research suggests more complex defense mechanisms
[22, 26, 28, 43, 47] that achieve similar low performance
overheads but at a higher cost of adoption, such as sub-
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stantial hardware changes or modifications to security-
critical programs. In comparison, the MRT guarantee
mechanism is simple and monotonically improves the
security against many existing side-channel attacks with
zero cost of adoption and low overhead.

We note that differences between hypervisor schedul-
ing and OS scheduling mean that the MRT mechanism
cannot be as easily applied by an operating system to de-
fend against malicious processes. As mentioned above, a
hypervisor schedules a small and relatively static number
of VCPUS onto PCPUs. Thus, it is feasible to coalesce
VCPUs with interactive behavior onto PCPUs separate
from those running batch VCPUs. Furthermore, virtu-
alized settings generally run with share-based schedul-
ing, where each VM or VCPU is assigned a fixed share
of CPU resources. In contrast, the OS scheduler must
schedule an unbounded number of threads, often with-
out assigned shares. Thus, there may be more oversub-
scription of PCPUs, which removes the idle time that
allows interactive VCPUs to coalesce separately from
batch VCPUs. As a result, other proposed defenses may
still be applicable for non-virtualized systems, such as
PaaS platforms that multiplex code from several cus-
tomers within a single VM [2].

6 Integrating Core-State Cleansing

While the MRT mechanism was shown to be a cheap mit-
igation for protecting CPU-hungry workloads, it may not
be effective at protecting interactive ones. If a (victim)
VCPU yields the PCPU quickly, the MRT guarantee does
not apply and an attacker may observe its residual state in
the cache, branch predictor, or other hardware structures.
We are unaware of any attacks targeting such interactive
workloads, but that is no guarantee future attacks won’t.

We investigate incorporating per-core state-cleansing
into hypervisor scheduling. Here we are inspired in
large part by the Düppel system [47], which was pro-
posed as a method for guest operating systems to pro-
tect themselves by periodically cleansing a fraction of
the L1 caches. We will see that by integrating a se-
lective state-cleansing (SC) mechanism for I-cache, D-
cache and branch predictor states into a scheduler that al-
ready enforces an MRT guarantee incurs much less over-
head than one might expect. When used, our cleansing
approach provides protection for all processes within a
guest VM (unlike Düppel, which targeted particular pro-
cesses).

6.1 Design and Implementation
We first discuss the cleansing process, and below discuss
when to apply it. The cleanser works by executing a spe-
cially crafted sequence of instructions that together over-

write the I-cache, D-cache, and branch predictor states of
a CPU core. A sample of these instructions is shown in
Figure 17; these instructions are 27 bytes long and fit in
a single I-cache line.

In order to overwrite the branch predictor or the
Branch Target Buffer (BTB) state, a branch instruction
conditioned over a random predicate in memory is used.
There are memory move instructions that add noise to
the D-cache state as well. The last instruction in the set
jumps to an address that corresponds to the next way in
the same I-cache set. This jump sequence is repeated un-
til the last way in the I-cache set is accessed, at which
point it is terminated with a ret instruction. These in-
structions and the random predicates are laid out in mem-
ory buffers that are equal to the size of the I-cache and
D-cache, respectively. Each invocation of the cleansing
mechanism randomly walks through these instructions to
touch all I-cache sets, D-cache sets, and flush the BTB.

We now turn to how we have the scheduler decide
when to schedule cleansing. There are several possibil-
ities. The simplest strategy would be to check, when a
VCPU wakes up, if the prior running VCPU was from
another VM and did not use up its MRT. If so, then run
the cleansing procedure before the incoming VCPU. We
refer to this strategy as Delayed-SC because we defer
cleansing until a VCPU wants to execute. This strat-
egy guarantees to cleanse only when needed, but has the
downside of potentially hurting latency-sensitive appli-
cations (since the cleanse has to run between receiving
an interrupt and executing the VCPU). Another strategy
is to check, when a VCPU relinquishes the PCPU be-
fore its MRT guarantee expires, whether the next VCPU
to run is from another domain or if the PCPU will go
idle. In either case, a cleansing occurs before the next
VCPU or idle task runs. Note that we may do unnec-
essary cleansing here, because the VCPU that runs after
idle may be from the same domain. We therefore refer
to this strategy as Optimistic-SC, given its optimism that
a cross-VM switch will occur after idle. This optimism
may pay off because idle time can be used for cleansing.

Note that the CPU time spent in cleansing in Delayed-
SC is accounted to the incoming VCPU but it is often
free with Optimistic-SC as it uses idle time for cleansing
when possible.

6.2 Evaluation

We focus our evaluation on latency-sensitive tasks: be-
cause we only cleanse when an MRT guarantee is not hit,
CPU-hungry workloads will only be affected minimally
by cleansing. Quantitatively the impact is similar to the
results of Section 5 that show only slight degradation due
to Chatty-CProbe on CPU-hungry workloads.

We use the hardware configuration shown in Figure 2.
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000 <L13-0xd>:

0: 8b 08 mov (%rax),%ecx

2: 85 c9 test %ecx,%ecx

4: 74 07 je d <L13>

6: 8b 08 mov (%rax),%ecx

8: 88 4d ff mov %cl,-0x1(%rbp)

b: eb 05 jmp 12 <L14>

00d <L13>:

d: 8b 08 mov (%rax),%ecx

f: 88 4d ff mov %cl,-0x1(%rbp)

012 <L14>:

12: 48 8b 40 08 mov 0x8(%rax),%rax

17: e9 e5 1f 00 00 jmpq <next way in set>

Figure 17: Instructions used to add noise. The assembly
code is shown using X86 GAS Syntax. %rax holds the address
of the random predicate used in the test instruction at the rel-
ative address 0x2. The moves in the basic blocks <L13> and
<L14> reads the data in the buffer, which uses up the corre-
sponding D-cache set.

We measured the standalone, steady state execution time
of the cleansing routine as 8.4 µs; all overhead beyond
that is either due to additional cache misses that the
workload experiences or slow down of the execution of
the cleansing routine which might itself experience ad-
ditional cache misses. To measure the overhead of the
cleansing scheduler, we pinned two VCPUs of two dif-
ferent VMs to a single PCPU. We measured the perfor-
mance of one of several latency-sensitive workloads run-
ning within one of these VMs, while the other VM ran a
competing workload similar to Chatty-CProbe (but it did
not access memory buffers when awoken). This ensured
frequent cross-VM VCPU-switches simulating a worst
case scenario for the cleansing scheduler.

We ran this experiment in four settings: no MRT guar-
antee (0ms-MRT), a 5 ms MRT guarantee (5ms-MRT),
a 5 ms MRT with Delayed-SC, and finally a 5 ms MRT
with Optimistic-SC. Figure 18 shows the median and
95th percentile latencies under this experiment. The me-
dian latency increases between 10–50 µs compared to the
5ms-MRT baseline, while the 95th percentile results are
more variable, and show at worst a 100 µs increase in tail
latency. For very fast workloads, like Ping, this results
in a 17% latency increase despite the absolute overhead
being small. Most of the overhead comes from reloading
data into the cache, as only 1/3rd of the overhead is from
executing the cleansing code.

To measure overhead for non-adversarial workloads,
we replaced the synthetic worst-case interactive work-
load with a moderately loaded Apache webserver (at 500
requests per second). The result of this experiment is not
shown here as it looks almost identical to Figure 18, sug-
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gesting the choice of competing workload has relatively
little impact on overheads. In this average-case scenario,
we observed an overhead of 20–30 µs across all work-
loads for the Delayed-SC and 10–20 µs for Optimistic-
SC, which is 10 µs faster. Note that in all the above cases,
the cleansing mechanism perform better than the base-
line of no MRT guarantee with no cleansing.

To further understand the trade-off between the two
variations of state-cleansing, we repeated the first (worst-
case) experiment above with varying load on the two
latency-sensitive workloads, Data-Caching and Data-
Serving. The 95th percentile and median latencies
of these workloads under varying loads are shown in
Figure 19 and Figure 20, respectively. The offered load
shown on the x-axis is equivalent to the load perceived
at the server in all cases except for Data-Serving work-
load whose server throughput saturates at 1870rps (this
is denoted as Max in the graph).

The results show that the two strategies perform simi-
larly in most situations, with optimization benefiting in a
few cases. In particular, we see that the 95% latency for
heavier loads on Data-Serving (1250, 1500, and 1750)
is significantly reduced for Optimistic-SC over Delayed-
SC. It turned out that the use of idle-time for cleans-
ing in Optimistic-SC was crucial for Data-Serving work-
load as the tens to hundreds of microsecond overhead
of cleansing mechanism under the Delayed-SC scheme
was enough to exhaust boost priority at higher loads.
From scheduler traces of the runs with Data-Serving
at 1500rps, we found that the VM running the Data-
Serving workload spent 1.9s without boost priority un-
der Delayed-SC compared to 0.8s and 1.1s spent under
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Figure 19: 95th percentile latency impact of the cleansing
scheduler with varying load on the server. (a) Data-Caching
and (b) Data-Serving. The error bars show the standard devia-
tion across 3 runs.

5ms-MRT and Optimistic-SC, respectively (over a 120
long second run). The Data-Serving VM also experi-
enced 37% fewer wakeups under Delayed-SC relative to
5ms-MRT baseline, implying less interactivity.

We conclude that both strategies provide a high-
performance mechanism for selectively cleansing, but
that Optimistic-SC handles certain cases slightly better
due to taking advantage of idle time.

7 Conclusions

Cloud computing promises improved efficiency, but
opens up new threats due to the sharing of hardware
across mutually distrustful customers. While virtual ma-
chine managers effectively prevent direct access to the
data of other customers, current hardware platforms in-
herently leak information when that data is accessed
through predictive structures such as caches and branch
predictors.

We propose that the first line of defense against these
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Figure 20: Median latency impact of the cleansing sched-
uler with varying load on the servers. (a) Data-Caching and
(b) Data-Serving. The error bars show the standard deviation
across 3 runs.

attacks should be the software responsible for determin-
ing access: the hypervisor scheduler. For cache-based
side channels, we showed that the simple mechanism of
MRT guarantees can prevent useful information from be-
ing obtained via side-channel attacks that abuse per-core
state. This suggests a high performance way of achieving
soft isolation, which limits the frequency of potentially
dangerous cross-VM interactions.

We also investigate how the classic defense technique
of CPU state cleansing can interoperate productively
with MRT guarantees. This provides added protection
for interactive workloads at low cost, and takes advan-
tage of the fact that the use of MRT makes rescheduling
(each of which may require cleansing) rarer.

Finally we note that while the focus of our work was
on side-channel attacks, the soft-isolation approach, and
the mechanisms we consider in this paper in particu-
lar, should also be effective at mitigating other classes
of shared-resource attacks. For example, resource-
freeing [39] and on-system degradation-of-service at-
tacks.
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