Using Program Analysis to
Synthesize Sensor Spoofing Attacks

Ivan Pustogarov, Thomas Ristenpart, and Vitaly Shmatikov
Cornell Tech

ABSTRACT

In a sensor spoofing attack, an adversary modifies the phys-
ical environment in a certain way so as to force an embed-
ded system into unwanted or unintended behaviors. This
usually requires a thorough understanding of the system’s
control logic. The conventional methods for discovering this
logic are manual code inspection and experimentation.

In this paper, we design a directed, compositional sym-
bolic execution framework that targets software for the pop-
ular MSP430 family of microcontrollers. Using our frame-
work, an analyst can generate traces of sensor readings that
will drive an MSP430-based embedded system to a chosen
point in its code. As a case study, we use our system to
generate spoofed wireless signals used as sensor inputs into
AllSee, a recently proposed low-cost gesture recognition sys-
tem. We then experimentally confirm that AllSee recognizes
our adversarially synthesized signals as “gestures.”

1. INTRODUCTION

The explosion in the popularity of embedded systems is
fueled in large part by their ability to sense, interpret, and
react to physical environments. For example, gesture recog-
nition systems measure signals and interpret them as user
commands [1,2}[7}{18], cameras that sense motion or light [22]
help autonomous systems navigate, and temperature sensors
inform household HVAC systems.

Software controlling embedded systems is often designed
assuming a benign environment, for example, a device owner
interacting with his own device. In real-world deployments,
however, it is necessary to consider sensor spoofing threats.
An attacker with direct or indirect access to the physical en-
vironment can emit physical signals that maliciously force
unwanted or unintended behaviors in the victim software
and, consequently, in the system controlled by this soft-
ware. Recent examples include disrupting the flight of au-
tonomous drones using sound generated by off-the-shelf com-
puter speakers [30] or laser pointers [11], injecting bogus
signals into medical devices 20|, controlling speech recog-
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nition interfaces with nonsensical noise 33|, and many oth-
ers |241/25,[29134]. These attacks are usually developed by
manual reverse engineering and experimentation.

Synthesizing sensor spoofing attacks. In this pa-
per, we initiate research on software analysis tools that can
help discover and exploit sensor spoofing vulnerabilities in
embedded software. We focus on a popular class of em-
bedded systems: lightweight microcontrollers attached to
one or more sensor components. The sensors convert physi-
cal readings (temperature, light, sound, electromagnetic sig-
nals, etc.) into digital values that are read by the micro-
controller’s software (often called firmware in this context).
Such systems are ubiquitous in so-called Internet-of-Things
(IoT) applications, autonomous vehicles, and elsewhere.

Sensor spoofing attacks involve an adversary generating
malicious inputs in the physical layer to cause certain be-
haviors in the target firmware. They can be decomposed
into a “software” phase and a “physical” phase.

In the software phase, the adversary infers which digital
inputs to the firmware will force the behavior the adversary
wants. In the physical phase, the adversary determines the
analog signals that will cause the target sensor to output the
desired digital readings. In this paper, we assume that the
specifications that describe the sensor’s physical-to-digital
conversion are sufficient for signal generation in the physical
phase. Therefore, we focus primarily on the software phase.

Our goal is to build a tool that can automatically discover
sequences of digital sensor readings that drive the firmware
to an adversarially chosen state. This includes possible se-
quences that the firmware designers did not expect. As with
other types of vulnerabilities (memory safety errors, race
conditions, etc.), automated analysis tools will in turn help
analysts harden their systems in the face of adversarial be-
havior.

This is a problem well-suited for symbolic execution [19],
given its ability to automatically generate inputs that drive
the program into particular execution paths. Existing sym-
bolic execution tools, however, do not work in our setting.
In contrast to the large body of research on symbolic execu-
tion for traditional architectures such as x86 [3}[5,[12L[16}23]
27,128, there are few tools for lower-end embedded architec-
tures |10,/21]. As we will see, even these tools do not per-
form well on the code patterns characteristic of the embed-
ded code that deals with sensor readings. Interrupt-driven
sensor-measurement loops prevent traditional forward sym-
bolic execution from reaching the relevant program points
(e.g., those that cause an embedded system to take actions
in response to certain sensor inputs). These code constructs
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cause path explosion, i.e., the number of feasible paths that
must be considered grows too fast.

Our contributions. We present DrE, the first tool specif-
ically engineered to analyze embedded firmware code with
respect to signal input spoofing. To handle the challenges
of analyzing embedded firmware, DrE uses a modular ap-
proach that takes advantage of both directed and composi-
tional symbolic execution.

Instead of attempting to explore all code paths, directed
symbolic execution [3}/23] starts with a target, i.e., a partic-
ular point of interest in the program. In our context, these
points are (easily identified) sections of the firmware code
corresponding to the control actions that the attacker wants
to firmware to take. The output of a successful directed
symbolic execution is a path, defined as a set of constraints
on inputs (i.e., sensor readings) that, if satisfied, will drive
the program to the designated point.

To mitigate path explosion, we devised a modular strategy
to efficiently find paths to program points of interest. It uses
a combination of call graph and control flow graph analysis
with compositional symbolic execution. DrE starts by find-
ing possible call chains from the program’s entry point to
the function containing the target line. It then symbolically
executes the function containing the target point and pro-
ceeds through a call chain backwards. Each function along
the way is (symbolically) executed independently. To gen-
erate inter-procedural path constraints, DrE then stitches
together the execution paths of individual functions. To
do this, DrE collects, rewrites, and propagates the relevant
constraints and performs a forward pass to check them.

For efficiency, DrE employs several additional heuristics.
DrE biases state selection towards shorter paths leading to
the target program point and employs a state-pruning strat-
egy [6}/10] to break out of infinite wait loops.

We applied DrE to a recently proposed gesture recogni-
tion system called AllSee |18]. In normal operation, this
MSP430-based system attempts to recognize several hand
gestures by extracting information from ambient wireless
signals (for example, TV or Wi-Fi). We show how to use
DrE with a simple model of the AllSee signal strength sen-
sor to generate spoofing attacks. The output of DrE can be
converted by the adversary into a sequence of radio signals
in the appropriate Mhz range using the sensor’s specifica-
tion. These signals trick the firmware into “recognizing” a
gesture of the adversary’s choosing.

We experimentally demonstrate feasibility of our synthe-
sized spoofing attack against the actual AllSee firmware with
reduced sampling rate connected to an emulated sensor. Us-
ing a software-defined radio to generate spoofed signals, we
were able to successfully spoof all gestures. The spoofed
signals can be used to maliciously control AllSee-equipped
devices without the device owner’s knowledge or consent.
In addition to demonstrating that our approach is capable
of synthesizing non-trivial spoofing attacks, our results call
into question the security of unauthenticated wireless ges-
ture recognition.

2. OVERVIEW

MSP430. Our program analysis tool targets the MSP430
family of 16-bit RISC microcontrollers from Texas Instru-
ments. It is one of the most popular microcontrollers [14]
today, used in a wide range of low-powered embedded sys-

tems [32]. Among its features are low power consumption,
wide range of peripheral modules, and ease of use.

MSP430 chips have 16-bit-addressable memory, including
peripheral control registers, RAM, and Flash memory (the
exact amount of each kind of memory depends on the chip).
Peripherals are accessed through a set of chip-specific, pre-
defined memory locations called control registers. The ac-
tual memory layout for a specific MSP430 chip can usually
be found in its specification published by TI. MSP430 pro-
grams are typically written in C and make extensive use of
memory locations related to peripherals.

MSP430 firmwares are typically interrupt-driven programs.
The firmware puts the chip into an infinite loop that sleeps
while waiting for inputs from the environment, which are
then handled by interrupt handlers.

Threat model. The general class of attacks we are in-
vestigating is sensor input spoofing [9}/11}/20L/24}25] 29,30,
33,[34]. In the context of gesture recognition systems (see
Section, the goal of a spoofing attack is to force the sys-
tem to “recognize” gestures that were not actually made by a
human body. To do so, the adversary emits wireless signals
from a nearby device that drive the recognizer’s firmware
into a code path that ends with the firmware concluding that
a particular gesture was performed. This can enable the ad-
versary to attack higher-level programs relying on gesture
input.

One plausible strategy for a gesture spoofing attack is to
actually generate a signal (i.e., perform the gesture) that
drives the device into the desired state, measure that signal
next to the device, and replay the measured signal to other
devices. In some scenarios, this approach would work well,
but it requires a priori understanding of what signal needs
to be produced in order to drive the device to the desired
state. For more complex systems, this could involve signif-
icant manual analysis even given the device’s source code.
Also, this approach may not work for signals that are diffi-
cult to measure precisely in noisy conditions, and it will not
help analysts explore firmware behavior in the face of signal
sequences not envisioned by the firmware designer.

In this paper, we show how the adversary can use pro-
gram analysis of the device’s source code to determine what
the signal should “look like” without actually performing
the physical action that generates the signal. Consider a
firmware that reads values from an analog sensor connected
to the chip through the ADC (analog-to-digital conversion)
port and takes a particular action if it recognizes a prede-
fined pattern in these values. We translate this problem of
signal pattern extraction—how to find sensor readings that
cause the program to “believe” that it received a certain sig-
nal—into a program analysis problem, namely, line reacha-
bility.

The attacker first identifies the lines in the code where a
pattern-dependent action is taken. By setting each of these
lines in turn as the target, our tool generates input con-
straints necessary to reach the line. These constraints can
then be used together with the physical properties of the
sensor (e.g., the ADC sampling rate) to generate signal pat-
terns that cause the firmware to perform a given action.

Symbolic execution. When a program is symbolically
executed [19], its inputs are replaced by symbolic values.
Whenever the program’s control flow reaches a branch in-
struction involving a symbolic value, the execution forks into



two states. Each resulting state is assigned the correspond-
ing path condition on the symbolic variable and the execu-
tion proceeds along both branches. One of the key features
of symbolic execution is that collected path conditions can
be used to generate program inputs for each explored path.

Consider a program with a single input x and a branch in-
struction conditioned on x > 5. At the start of the program,
x is replaced by a symbolic variable a. Symbolic execution
of this program starts with one state and empty path condi-
tions. When the execution reaches the instruction “if ( x >
5 )7, it forks and a copy of the initial state is created. The
first state proceeds along the true branch and adds o > 5
to its path conditions. The second state proceeds along the
false branch and a < 5 is added to its path conditions. As
the execution goes through more branch instructions, more
states are created; the number of states grows exponentially
with the number of branches involving symbolic values, usu-
ally causing path explosion.

In typical applications of symbolic execution, the goal is
maximum code coverage, i.e., to to cover as many branches
in the execution tree as possible. Most open-source sym-
bolic execution tools are optimized for this goal. Directed
symbolic execution [3}[23], on the other hand, tries to find
an input that would steer the program to a target line of
code, exploring as few paths as possible. Since some states
have a higher chance to reach the target line than others
and non-trivial programs have a large number of states, de-
ciding which states to execute next (i.e., the state selection
strategy) plays an important role for directed symbolic exe-
cution.

3. FORWARD SYMBOLIC EXECUTION

Symbolically executing firmware code for embedded sys-
tems has nuances specific to microcontrollers: interrupt-
driven control flow, extensive use of peripheral devices, and
hardware-related memory areas. Consider a common code
patterrﬂ for MSP430 microcontrollers in Figure This
code poses two problems for conventional tools. First, it
uses symbols peripheral-related memory locations, WDTCTL
and BCSCTL1. Before symbolic execution can start, these
symbols need to be resolved and the corresponding memory
locations initialized (possibly with symbolic values). Sec-
ond, the code snippet includes an interrupt handler. Since
there is no explicit call to the handler, the execution engine
should be “educated” on when to execute it.

We chose the FIE [10] symbolic execution engine as our
basis for DrE since it already provides memory and interrupt
models for MSP430. FIE, in turn, reuses several compo-
nents from an earlier symbolic execution tool for x86 called
KLEE [§]. We started by augmenting FIE with a new state
selection strategy that prefers states closer (in terms of the
number of basic blocks) to the target line in the program’s
ICFG (interprocedural control flow graph). We call this
mode of DrE “Forward Only Mode.” We build the program’s
ICFG path and select states as follows.

Build call chains. We first choose k shortest call chains
(fn < ... < f1 < fo) from the target line to the entry
point. The first function in this chain, f,, contains the tar-
get line. In our implementation we use k = 4.

Build interprocedural control flow paths. For each such chain,

!Taken from http://www.simpleavr.com/msp430-

projects/rtc-clock

2 void main(void) {

4 uint8_t pos=0;
5 WDTCTL = WDTPW + WDTHOLD + WDTNMI + WDTNMIES;

6 BCSCTL1 = CALBC1_1MHZ;

8 _BIS_SR(GIE);
9 while (1) {

11 }‘
12}

14 interrupt (PORT1_VECTOR) PORT1_ISR(void) {
15 P1IE &= ~(BIT2|BIT7);
16 _BIC_SR_IRQ(LPM4_bits);

Figure 1: Simple MSP430 code example.

we build an ICFG path by concatenating the shortest CFG
paths of each f; (from f;’s entry to the callsite of f;1+1).

Ezxpand inner calls. If a CFG path contains an inner call
to g, we (recursively) expand it: find g’s shortest path from
its entry to the return statement and replace the call to g
with this path. We then choose the shortest among the &
constructed ICFG paths.

Select state. During execution, DrE chooses the next state
according to the following strategy. First, it prefers states
for which the current instruction is in a function that belongs
to the chosen ICFG path. Among these states, it chooses
the one that is closest to f, (in terms of the number of
functions). If two states belong to the same function, DrE
chooses the one that is closest to the function’s return state-
ment (or a call to the next function in the ICFG) in terms
of the number of basic blocks.

Limitations of FIE’s interrupt model. In FIE, in-
terrupts can be fired either for each basic block or for each
instruction. Because interrupt firings cause new states to be
generated (one state in which the interrupt fired and one in
which it did not), this quickly creates a large number of ex-
ecution paths, the vast majority of which are not feasible in
practice because interrupts would not fire on every instruc-
tion (or every basic block) in a real execution. Consider the
code snippet in Figure [2} (1) a read from the ADC port is
followed by (2) some logic consisting of several basic blocks,
and (3) another read from the ADC. During the ADC in-
terrupt, the ADC value is saved and the average of previous
values is computed.

The developer’s intention here is to check if the last ADC
value is bigger than the average after adding exactly this
new value. If the ADC interrupt is called every instruction
or every basic block, the average will contain redundant val-
ues (whose number is equal to the number of basic blocks
between lines 6 and 10) and thus end in a program state
that is impossible to reach in real executions.

In addition to the issue of infeasible paths, the inter-
rupt model used by FIE hinders performance due to the
interrupt-related path explosion. Consider the code snippet
in Figure [3] which has an infinite loop in which the first 1000
iteration are idle, they simply wait until the peripherals set-
tle down. With interrupts enabled, FIE will produce a new
fork at each iteration which will cause path explosion well



int foo ()

6 _bis_SR_register (LPM3_bits | GIE);
8 if (x>5) f£() else g();
10 _bis_SR_register (LPM3_bits | GIE);

12 if (val > avg)
13 h(

17 #pragma vector=ADC10_VECTOR
18 __interrupt void ADC10_ISR(void) {

20 val = ADC10MEMO;

21 values [index++] = val;

22 avg = compute_avg(values)
A

Figure 2: If interrupts are fired in every basic block, the
average will contain an incorrect value.

1 while (1)

2 {

3 if (tick >= 1000)

1 {

5 acceleration = process_adc();
6 if (acceleration == 20)

7 assert (0) ;

8 ¥

9 tick++;

10}
Figure 3: Wait loops create too many interrupt forks.

before the analysis of actual code starts. This means that
FIE cannot handle even some simple firmwares.

To overcome these limitations, we added a new interrupt
model in which timer-based interrupts can be fired each
time the firmware goes into the low-power interrupt-enabled
mode. While this may miss some paths that would arise in
practice, it is a reasonable starting heuristic since it often
aligns directly with the developer’s intention: put the mi-
crocontroller into sleep mode until an interrupt wakes it up.
This offers significant advantages over firing interrupts every
block or instruction as in [10]. Considering again the code
snippet in Figure[2] if we fire a new interrupt only when the
firmware goes into sleep mode, the average value will con-
tain the correct symbolic expression. In the code snippet in
Figure |3} no unnecessary interrupts will be produced.

MSP430 allows software to enable ADC conversion by set-
ting appropriate bits in the ADC control registers. FIE’s
memory model, however, is stateless in the sense that it
does not preserve previously written values and all subse-
quent reads will return a fresh symbolic value. In our imple-
mentation, we fixed this limitation so that special memory
locations and registers can store symbolic values.

4. MODULAR DIRECTED SYMBOLIC EX-
ECUTION

Both FIE and DrE’s forward mode can be used to extract
signal patterns for moderately complicated firmware, but it
is inefficient when the conditions required to reach the target
line are deeper in the call chain.

Summary Executor

Firmware Dispatcher
bytecode

U

Forward
Executor

Summary Executor

) L

ll

Memory/Interrupt Model

Figure 4: System components

For example, the firmware code for the AllSee gesture
recognition system [18] includes a function that contains two
loops and is responsible for obtaining amplitude samples of
the ambient wireless signal; one loop iteration corresponds
to one sample. In this concrete example, the simplest ges-
ture requires at least 16 samples. If this code is analyzed
using a basic breadth-first state selection strategy, the prob-
ability of reaching the program point responsible for recogni-
tion is 27%. With two invocations of the function (required
for some gestures in AllSee), the probability becomes 2732,
DrE, when used in its forward symbolic execution mode, also
does not get beyond the point where the simplest gesture is
recognized. This motivates the modular approach described
in this section.

4.1 System overview

Figure[dshows the architecture of our system. The firmware
is compiled into LLVM bytecode. The bytecode is ana-
lyzed by the Dispatcher which first performs some basic
static analysis: it searches for possible interprocedural paths
from the program start to the target line using the pro-
gram call graph and control flow graphs of individual func-
tions (similar to the forward mode described in the previous
section). For each function from this path, the Dispatcher
starts collecting execution paths by running an instance of
Summary Executor. Once enough are collected for all func-
tions along the call path (this includes building function
summaries for all inner calls, too) the Dispatcher tries to
stitch them together and the final candidate interprocedu-
ral paths are checked by calling Forward Executor. Both
Summary Executors and Forward Executor make use of the
MSP430 memory and interrupt models.

This strategy has several attractive features. First, ex-
ecution paths are collected on demand, starting from the
bottom-most function and going all the way up to the entry
function (including all inner function calls).

Second, when building execution paths for a function,
we propagate path constraints on its arguments and return
value from the execution paths of other functions, thus steer-
ing symbolic execution towards paths that are more likely
to result in a feasible interprocedural path to the target line.

Third, we reuse already collected execution paths.

4.2 Example

Consider a simple example in Figure [f] We set line 5 in
function printGesture() as the target line.

We start by building an interprocedural control flow path
(which may turn out to be infeasible) from main() to the
target line. There is one such path that starts in main(),
then goes twice inside function getGesture (), and then into
function printGesture().



1
2 int printGesture(int gi, int g2)
3 {

4 if ((gl == 1) && (g2 == 2))

5 assert (0);

7}

o int getGesture ()
10 {

12 read_adc_values ();

16 return g;

17}

19 int main()

20 {

getGesture () ;
getGesture () ;

int gesturel
int gesture2

if ((gesture2 != 3) && (gesturel != 4))
25 printGesture (gesturel, gesture2);

Figure 5: A simple example program

1 int main()

2 {

int gesturel = <I';>;
4 int gesture2 = <I'3>;
6 if ((gesture2 != 3) && (gesturel != 4))

7 printGesture (gesturel, gesture2);

s}

Figure 6: A version of main() (Figurel5)) modified to replace
function calls with symbolic variables.

Next, we collect execution paths for printGesture () with
the goal of finding those that call assert(). We replace
formal arguments gl and g2 with new symbolic values 71
and ~2. One of the execution paths w; with path constraints

Clz(’yl:l/\’yQ:2)

goes through the assertion statement, so we save this execu-
tion path along with its constraints.

Next, we collect execution paths for main(). We are in-
terested in paths that call printGesture() and satisfy con-
ditions C; on its arguments. Note that main() has two calls
to getGesture(). Because of this, we replace these func-
tion calls with new symbolic variables and re-write main ()
as shown in Figure @

We proceed with collecting execution paths for main()
and find execution paths w2 with path constraints

Co=(T1 #3AT2 #4).

Our goal is to “glue” together paths w; and wz. Therefore,
we use the following rewriting rule: (I't =11 A T's = 72)
and check (€ := C; A C2) (which is satisfiable and thus we
“glue” paths wi and ws):

Q:IZ(F1753/\F27£4/\F1:1/\F2:2)

The final step is to collect execution paths for getGes-
ture () and find those that would not violate €. We denote
the return value of function getGesture() as r and rewrite
¢ using the following rules: for the first call we use (I'1 =),
for the second call we use (I'2 = r). As the result, we are

Algorithm 1: Collecting execution paths

1 CollectPaths(f,C);
input : f - function to execute.
input : C - set of constraints.
output: EP; - set of f’s execution paths.

makeArgsSymbolic(sinit);
refreshGlobals(sinit);
S’P‘f — J;
S« {sinit};
while § # & do
so < selectState(S);
if mergeState(sp, S) then continue;
S8 + executelnstruction(sg);
S +— SUSS;
if isTarget(sg) V isRet(sp) then
EPys « EPs U {path(so)};
w = path(sg);
C' = rewriteConstraints(C, w);
if isSolvable(C’) then
| pause execution and return EPy
end
end
if isCalllntruction(so) then ConstructInnerCall(sg);
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interested in execution paths that have the following con-
straints on the return value:

61::(7'753/\1“2754/\7":1/\1“2:2)

in which I's is a free variable. And

€ =T1#3 ANr#£4 NTh =1 A r=2)

in which I'7 is a free variable.

Finally, we follow the execution paths that our analysis
was able to glue together. This resolves the previously un-
defined calling context.

4.3 Collecting execution paths

In DrE, during the first phase, each function along the
call chain is executed separately and in isolation. The cor-
responding pseudocode is shown in Algorithm [I] We are
interested in collecting execution paths that satisfy specific
conditions on the function’s formal arguments and return
value and that end up calling the next function in the cho-
sen call chain.

We start by constructing the initial execution stateEl and
adding it to the set of active states S (lines 4-5). Because the
future context in which function f will be called is unknown,
we set function f’s arguments to symbolic values and assign
fresh symbolic expressions to global variables (lines 2-3).

In the main loop, a state is chosen from S according to
a state selection heuristic. Line 8 checks if the state has
similar memory and constraints configuration to some pre-
viously seen stateﬂ If a match is found, the current state is
merged with the matching state. This state merging func-
tionality allows us to eliminate redundant states, which arise
frequently in embedded firmware (e.g., due to waiting loops).

The system then symbolically executes the next instruc-
tion. If the executor encounters a conditional statement, it
queries the underlying STP solver, and if both branches are

2 An execution state includes program counter, stack frames,
and global memory (heap, global variables, etc.).

3The executor keeps a list of memory configurations of all
previously seen states.



Algorithm 2: Dispatcher main loop

1 DispatcherMainLoop(target_line);
input : target_line - line of code to reach.
output: O - set of constraints on the firmware input that would
drive the firmware to the target_line.

2 call_chain < pick_call_chain();

3 candidates + O;

4 repeat

5 f « pickLastFunction(call_chain);

6 EPy <+ CollectPaths(f,{target = target_line});
7 foreach w € £Py do

8 if path w does not end at the target line then
9 ‘ continue

10 end

11 stitchInnerCalls(w, &);

12 stitchNextInCallchain(w, &);

13 put(candidates, w);

14 end

15 foreach c € candidates do

16 if (forward_check(c)) then

17 O+ O0U{c}

18 print c;

19 end
20 end

21 until call_chain_switch_timeout;

possible the state is forked and the newly produced states
are added to the list S of active states (lines 9-10).

If the state’s instruction is a return instruction or a call
to the next function in the call chain, the current execution
path is stored in EP (lines 11-17). In lines 14-17, we check
if the execution path satisfies the conditions, in which case
the executor pauses, saves its current configuration, and re-
turns the set of collected execution paths to the Dispatcher.

Special semantics for call instructions. In order to in-
crease scalability of our system, we implemented a special
semantics for call instructions. Line 19 describes this be-
havior. Whenever the executor encounters a call to function
finner, 1t does not expand this call immediately. Instead,
we create a new symbolic variable representing the result of
the call and proceed with the next instruction. As global
variables may have changed in that function call, we assign
them new fresh symbolic values (we will resolve this approx-
imation at a later stage). At the same time, we extract con-
ditions on finner’s actual arguments from the current state’s
constraints and save them for the future. These conditions
will be used for stitching function summaries.

Furthermore, we call the underlying interrupt handling
model in order to check if an interrupt can fire at the current
instruction. If an interrupt can fire, we refresh the global
variables and proceed with the execution of f.

4.4 Dispatcher main loop

The Dispatcher is the central component of the system.
It schedules the process of collecting execution paths and
stitches them together. Its main executing loop is shown
in Algorithm It starts at line 2 by choosing a call path,
i.e., a call sequence (fn < ... < f1 + fo) from the target
line to the entry point. The first function in the call path
is function f, containing the target line. The dispatcher
then (lines 5-6) picks f, and starts collecting f,’s execution
paths that end up calling the target line.

Once execution paths are collected, the Dispatcher ana-
lyzes them individually (lines 7-20). Assume path w reached
the target line. At this point (see Algorithm [I)), w may
have some call instructions that were replaced by symbolic

values. The Dispatcher calls recursive function stitchInner-
Calls() (line 11) to try to find proper execution paths for
each of them (see the next section for the details). Thus w
becomes linked to the execution paths of inner calls.

The Dispatcher then tries to find execution paths of the
next upper-level functions fn,_1, fn—2,... that it can stitch
with w by calling function stitchNextInCallchain() (line 12).
This function tries to find executions path of the next func-
tions f,,_1, ... in the call chain that can be stitched with w. It
goes through and finds execution paths for each function in
(fr=1,-.., fo) all the way toward the program’s entry point;
it also accumulates the constraints of the already stitched
execution paths. As recursion ends by reaching the top-
level function fo, a complete “stitched” candidate path c is
returned. It is added to the candidates list.

Since full memory context was unknown at the time when
execution paths were collected, candidate full paths might be
infeasible. The Dispatcher thus makes another forward pass
along this path using Forward Executor (lines 15-20). For-
ward Executor implements a simple state selection strategy
that follows the provided interprocedural execution path.

If none of the candidate interprocedural paths turn out to
be feasible, the Dispatcher proceeds to the next iteration of
its main loop. New execution paths are collected, stitched,
and checked by the Forward Executor. After a timeout,
another call path is tried.

4.5 Stitching execution paths

DrE “stitches” execution paths of different functions based
on the constraints on formal/actual arguments and con-
straints on return values. In this subsection, for clarity of
exposition we use the same symbol wi to denote both the
execution path and the corresponding path constraints.

Connecting call-chain functions. Consider two func-
tions which belong to the call chain frest and fprew (fnest
calls fprev) and their execution paths wprey and Wneat; Wprew
has already been stitched to some execution paths (wn <
... 4 Wprev) Of the previous functions in the call chain.

Algorithmchecks if Wprev and Wreqt can be stitched. In-
formally, this algorithm recursively rewrites all occurrences
of formal arguments in (wn, . . ., Wprev) With the correspond-
ing actual arguments from wyeq+ and checks if the conjunc-
tion (wn A ... A Wprev A Wnest) is solvable. In lines 2-3, it
chooses the next function from the call chain and collects
its execution paths. In lines 4-6, for each collected exe-
cution path wWpeqzt, it replaces formal arguments in wprev’s
path constraints C' with the actual arguments from wpeqt
and checks if they are solvable. It then resolves all inner
calls for wnezt by calling stitchInnerCalls() and follows the
recursion for the next function in the call chain in line 8. It
then links wprey and wpeq in line 9.

Executing and stitching inner calls. Consider a func-
tion’s execution path w (with accumulated constraints C,
which include all constraints starting from the target func-
tion f,) with calls that were replaced by symbolic values.
The Dispatcher tries to find execution paths for each such
inner call finner. It Tuns an instance of Summary Executor
(according to Algorithm to collect a set of execution paths
{Winner}. The dispatcher then tries to stitch them with w
using algorithm Informally, it (1) rewrites {winner}'s for-
mal arguments with the actual arguments from w; and (2)
replaces all occurrences of previously unconstrained sym-



Algorithm 3: Stitching call-chain functions

1 stitchNextInCallChain(wprev, C);
input : wprey - execution path of the previous function fpreco
in the call chain
input : C - accumulated constraints from bottom-level function
up to fpreu
freaxt < pickNextFunction(call_chain);
EP frows — CollectPaths(freat, C);
foreach wpesxt € EPy,,.,, do
C’ <« rewriteConstraints(C, wnezt);
if isSolvable(C’) then
stitchInnerCalls(wnezt,C’);
stitchNextInCallchain(w), ., C’);
link(wp7‘ev7 wnezt)?
end
end
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Algorithm 4: Stitching inner calls

1 stitchInnerCalls(w, C);
input : w - execution path containing inner calls.
input : C - accumulated set of constraints from the call chain
function down to this execution path

foreach f € inner_calls(w) do
EP s < CollectPaths(f,C);
foreach winner € EPy do
C’ <« rewriteConstraints(C, Winner);
if isSolvable(C’) then
stitchInnerCalls(winner,C’);
link(wa U)me,er)
end
end
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bolic values in C' with the actual return values from winner
and checks if the resulting conditions are solvable. The
rewriting of function arguments and return values happens
recursively if Winner has inner calls itself (line 7).

4.6 Limitations

Under-defined calling context. In our modular ap-

proach, functions are executed independently within an under-

defined calling context. Constraints on global variables may
thus be lost, causing extra states that would not have been
created had the program been symbolically executed in a
normal (forward) way. To compensate for this, DrE, upon
executing a function f, recursively identifies global variables
in f that are also used in f’s callers. Only such global vari-
ables are assigned fresh unconstrained symbolic values.

Similarly, global variables can change after f calls some
function g (because we delay executing inner calls and im-
mediately step over to the next instruction). DrE assigns
fresh unconstrained symbolic values only to those variables
that are also used by g and its callees.

Pointers. Global pointers and function arguments of
pointer type which would be pointing to valid memory loca-
tions during normal execution might become invalid when
dereferenced. To tackle this problem, we adopted the fol-
lowing approach. Every time a new function is executed,
for each pointer used by the function (global pointers and
pointers that appear in the formal arguments list) we allo-
cate a symbolic array of fixed size (64 bytes by default). We
found that this limit usually holds for MSP430 firmware and
does not lead to false overflows. Our current prototype does
not support pointers to pointers, however.

Allocating new symbolic arrays for (undefined) pointers
and assigning new symbolic values for global variables and
formal arguments results in paths that might turn out to be
infeasible (i.e., when the execution runs from the program’s
entry point). Many infeasible paths are eliminated during
the path stitching procedure when calling context is partially
defined. The remaining infeasible paths are eliminated dur-
ing the final forward pass in which the calling context is
fully defined. Therefore, checking infeasible interprocedural
paths can make finding feasible interprocedural paths slower
(in one case significantly—see discussion in the next section)
but does not impact the soundness of the analysis.

5. EXPERIMENTAL RESULTS

In this section, we compare DrE’s efficiency with FIE [10].
We first use two synthetic examples to explain FIE’s limi-
tations, then test DrE on several real-world firmwares, and
finally use DrE to extract signal patterns from the AllSee
gesture recognition system [18].

All experiments were run on a machine with four Intel
Core i7 3.07 GHz cores) and 24 Gb of memory. Table
shows the results. The run time of each experiment was
at most one hour; ‘-’ means that the analysis tool failed
to reach the target line within one hour. We ran DrE in
two modes: (1) compositional, or modular, mode in which
functions are executed in isolation and then stitched; and (2)
forward mode in which no execution paths are pre-collected
and the program is executed top-to-bottom.

5.1 Synthetic examples

The first example (Figure [§ in the Appendix) features
an infinite loop in which the first 1,000 iterations are idly
waiting until the peripherals settle down. FIE was not able
to find the target line due to state explosion: a new fork
was generated with each basic block during the first idle
loop iterations. In contrast, DrE’s interrupt model allowed
it to find the target line in under one minute. While both
DrE modes were able to find the target line, forward mode
was significantly faster; this is due to the fact the program
control logic and its call graph for the first example are quite
simple and thus do not benefit from modular execution.

The second example (Figure [9]in the Appendix) demon-
strates the problem of path explosion caused by sensor in-
put processing logic. The main function contains an infi-
nite while loop that assigns values to a three-element array
based on the sequence of ADC readings. If all three ele-
ments are assigned a fixed value, the target line of code is
executed. The problem here is that the function responsible
for processing the ADC inputs contains a loop which should
be executed at least 15 times in order to return the right
value. This function should be executed at least 3 times
which results in 2*° possible states. FIE failed on this ex-
ample. In less then 10 minutes it generated more than 4,000
states[] DrE’s forward mode was also not able to reach the
target line due to a large number of states. In contrast,
it took DrE’s compositional mode less then 20 seconds to
produce the sensor input values required to reach the target
line: DrE decomposed the program into separate functions

“In addition to path explosion, we also found an implemen-
tation limitation in FIE: it shares one common 16-bit ad-
dress space for all execution states, which puts a limit on
the number of states. This resulted in FIE halting after it
generated about 4,000 states.



DrE

FIE | Forward | Compositional I
Synthetic 1 - 11s 43s
Synthetic 2 - - 20s
softmodem-for-msp430* - - 35s
FreeStanding - 8s -
mbtronics_temperature 31m 17m 27s
mrothe_temp - 8m 13s

Table 1: DrE vs. FIE. “-” means that the target line was not
reached within one hour.

and inferred the proper conditions on their arguments and
return values. This modular strategy quickly eliminates a
significant fraction of the irrelevant paths.

5.2 Sensor firmware

Despite the fact that DrE is still a research prototype, it
performed well on several real-world firmwares. For this set
of experiments, we use MSP430 programs from the corpus
used by |10]. This set includes projects of different complex-
ity downloaded from the Internet. Some of them consist of
no more than 2 functions. Both DrE and FIE performed
well on those examples and in many cases achieved full code
coverage. We thus chose several non-trivial firmware pro-
grams for testing DrE. We manually selected target points
that involve loops and non-trivial control logic.

softmodem-for-msp430E| This firmware is an implemen-
tation of the ITU V.21 modem specification (for use in a
general switched telephone network). The firmware consists
of 38 functions and 1,188 lines of code. It starts with some
initialization code (to set up the basic clock system, set up
modem functions, and enable analog-to-digital (ADC) con-
version). We set the first line after the initialization code as
the target line. We performed our experiments on a modi-
fied version of this firmware. The original code contains two
idle “for” loops (one line of code each) with a large number
of iterations to settle the oscillator ADC reference voltage,
which frustrated both DrE and FIE. These loops can be
easily identified and eliminated by static code analysis.
The rest of the initialization code is rather complex and
involves multiple loops (including an infinite one, with a
specific break-out condition) and inner calls with depth of
five. This cause FIE to get stuck in the initialization code.
DrE was able to find a path through the initialization code
in 35 seconds and avoided path explosion by discovering the
specific condition for breaking out of the infinite loop.

mbtronics,temperatureEl This firmware continuously sam-

ples an ADC connected to a temperature sensor, compares
the result against a pre-specified value and sets PWM (Pulse
Width Modulation) based on the measured ADC offset. It
then transmits temperature values via UART to the PC.
The firmware contains 377 lines of code and 14 functions.
It starts with initialization code and then enters an infinite
loop (with several inner calls and branch instructions). The
loop needs to be executed 8 times to refresh the state and
start a new sequence of temperature measurements. While
FIE reached this refresh in 31 minutes, DrE’s compositional
mode reached that part of the code in 27 seconds. DrE’s
forward mode reached the same code in 17 minutes.

®https://github.com/dyno/softmodem-for-msp430
Shttps://github.com/mbtronics/msp430_projects

We also considered another variant of this firmware (named
mrothe_temp) found in the firmware set. It shares most of
the code with mbtronics_temperature but includes some ad-
ditional logic. FIE was not able to find a path to the target
line, while DrE reached it in 13 seconds and 8 minutes in
compositional and forward modes, respectively.

FreeStandingD This firmware uses an accelerometer con-
nected to the ADC port to measure the time spent in a
handstand position by the person wearing a device. The
firmware consists of 7 functions and 318 lines of code. In
spite of the firmware’s seeming simplicity, FIE was unable
to reach at least one part of the code responsible for con-
trol logic within one hour. DrE’s compositional mode did
not perform well in this case either due to extensive use
of global variables throughout different functions (see Sec-
tion[1.6). In contrast, DrE’s forward mode with the shortest
distance search strategy found a path to the relevant parts
of the code in 8 seconds.

5.3 AllSee gesture recognition system

As a concrete target for a signal spoofing attack, we chose
an MSP430-based gesture recognition system called AllSee [18]
which we believe is a good example of an embedded sys-
tem that makes decisions based on sensing its environment.
AllSee attempts to recognize hand gestures by extracting
information from ambient wireless signals (for example, TV
or Wi-Fi).

AllSee aims for extremely low power consumption. It uses
a combination of custom-built sensor hardware (an enve-
lope detector that extracts low-frequency amplitude changes
from the ambient RF signal) and an MSP430 controller that
implements gesture recognition logic. The envelope detector
is connected to the controller through the analog-to-digital
converter (ADC) port. The MSP430 firmware has a set of 8
hard-coded amplitude change patterns that correspond to 8
different hand gestures. Once the received sequence of val-
ues matches one of the patterns, the firmware can relay this
command to higher-level software (in the proof of concept,
it simply prints the name of the recognized gesture over the
UART interface).

An important parameter of the AllSee classification logic
is the minimal amplitude change threshold. This is used as
a threshold for detecting when a significant change in ampli-
tude has occurred. The value is hardcoded and presumably
was chosen based on the sensitivity of the envelope detec-
tor and observed signal attenuation caused by hand gestures.
Note that AllSee’s logic recognizes not the specific amplitude
changes but only the coarse shape of the signal (up/down/-
down, etc.) As long as the coarse shape is preserved, the
spoofed signal will be recognized. This makes the attacker’s
life easier, as he does not need to reproduce an exact signal
but only to mimic its shape.

AllSee’s source code [17] is available under a public copy-
right license. It consists of about 300 lines of code but in-
cludes infinite loops and complex logic that frustrate non-
directed symbolic execution tools, as we show below.

We used DrE’s compositional mode to extract gesture pat-
terns from the AllSee firmware. In Table 2] we compare
DrE’s efficiency (both compositional and forward modes)
with FIE. In this case, “-” means that the pattern for the
gesture was not found within 36 hours.

"https://github.com/johnhowe/FreeStanding



FIE [ DrE

| Forward | Compositional I
Push - - 53s
Pull - - 4m 37s
Flick - - 2h 8m
Zoom out - 28m 51s
Zoom in - - 43s
Punch - - 2m 21s
Reverse Punch - - 2m
Double Flick - 13m 34s

Table 2: Gesture pattern extraction times

FIE failed to reach the target lines in all cases. There are
two main reasons for this. AllSee’s code includes a func-
tion that contains two loops and is responsible for obtaining
amplitude samples of the ambient wireless signal; one loop
iteration corresponds to one sample. Recognizing a gesture
involves executing the loop 16 times in a row (once it devi-
ates, the counter drops to zero). The firmware invokes this
function at least twice, which results in path explosion. The
second reason is that AllSee computes a moving average over
the last 64 ADC values. We observed that when the number
of ADC values is large, it can take tens of seconds for the
STP solver to solve a single formula in the path constraints.

DrE’s forward mode was able to extract patterns for two of
the gestures. Its state selection strategy gives preference to
states that are closer to the target line. Therefore, once the
execution breaks out of the first loop and enters the second
loop, it keeps choosing states in the second loop forever.

DrE’s compositional mode is much more efficient. It was
able to extract signal patterns for 7 out of 8 gestures in less
than five minutes. For the last gesture, however, it took a
bit more than two hours. In the latter case, the tool spent
most of the time in the last forward pass verifying different
combinations of obtained execution paths. Because the code
computes the moving average over the last 64 ADC values,
most of the time was spent in the STP solver.

Extracted patterns. The extracted patterns of signal
amplitude changes (read from ADC after sampling) corre-
sponding to different gestures are shown side by side with
the original copies from (18] in Figures[L0|and [L1]in the Ap-
pendix. The patterns obtained via symbolic execution in
most cases are simpler than the original ones. This could
make spoofing attacks easier compared to the case when an
attacker needs to reproduce the exact patterns from AllSee’s
description [18|, which is an extra benefit of our approach
(in addition to automated extraction).

6. SIGNAL SPOOFING

So far we obtained sequences of ADC values that make
AllSee firmware recognize specific gestures. In this section,
we report on proof-of-concept experiments that show how
to trigger these ADC values by sending wireless signals such
that the results of sampling by AllSee’s sensor have the
shapes shown in Figures [10] and [11]in the Appendix.

6.1 Experimental setup

Porting firmware. The original AllSee source code was
written for the now obsolete MSP430F5310 launchpad, and
we could not readily purchase this legacy launchpad from
Texas Instruments. We therefore ported the firmware to
the MSP430G2553 microcontroller. This involved different

Allsee hardware emulation

j/)D ((( Arduino

Ettus USRP Ettus USRP

MSP430g2553

Figure 7: AllSee hardware emulation

assignments to control registers (in order to properly set up
the clock system, UART, etc.) We configured the ADC to
measure voltage between 0 and 2.5 volts. We did not modify
any of the core functions responsible for gesture recognition.

Hardware emulation. In order to minimize overall power
consumption, AllSee uses custom-built hardware: an enve-
lope detector and low-pass filter to extract low-frequency
amplitude changes from the carrier signal. Since we did
not have this hardware, in our experiments we emulated it
with software-defined radio. Our emulation configuration
is shown in Figure An Ettus USRP B210 [13] device
equipped with an omnidirectional antenna is connected to
a laptop with gnuradio [15]. Using emulation also allowed
us to use a different carrier frequency of 903 MHz (which
is at the beginning of ISMEI) band. Corresponding gnuradio
blocks are responsible for extracting the signal amplitude
and removing high-frequency amplitude changes (we chose
cutoff frequency of 100 Hz). The extracted samples are then
converted back to voltage levels and sent to the MSP430 de-
vice through a digital-to-analog converter (we chose to use
ArduinoDue [4] for that).

To reduce internal noise from the power supply and volt-
age reference of the A/D converter, we applied power sup-
ply decoupling as specified in [31]. We also added a low-
pass filter on the ADC input (i.e., between Arduino DAC
and MSP430). The resulting accuracy of ADC was approx-
imately 2 bits.

In order to support a large number of devices, gnuradio
abstracts the actual signal amplitude values; instead of con-
crete signal strength levels each transmitted /received sample
is characterized by a unitless value in the range [0; 1]. These
values are proportional to the actual amplitude, but getting
the actual voltage requires calibrating the device.

We performed a series of gestures and measured the dis-
tortion in the background signal (in terms of gnuradio unit-
less values). We then took this value and matched it with
the signal threshold (in terms of ADC steps) from the AllSee
firmware, thus computing the correspondence between USR-
P /gnuradio unitless amplitude and ADC level on the MSP430
device. We believe that this calibration methodology is sim-
ilar to how one would calibrate the original AllSee.

Once the hardware emulation was calibrated, we performed
a series of gestures. While ultimately the shapes of the dis-
torted background signals were consistent across repeats of
the same gesture, only one (Flick) gesture had similar ampli-
tude changes to that reported in [18]. Figure[12]in the Ap-
pendix shows the signal patterns for two gestures obtained
through our emulation next to the patterns from [18]. We
believe that the difference in shapes is caused by the dif-
ference in hardware configurations and environment condi-

8The industrial, scientific and medical (ISM) radio bands
are radio bands reserved internationally for the use of ra-
dio frequency energy for industrial, scientific and medical
purposes other than telecommunications.



tions. To have a “flick” recognized as such in our environ-
ment would require additional tuning of the firmware to the
new conditions. Because we wanted to assess as unmodi-
fied an AllSee firmware as possible, we abstained from any
additional modifications to the firmware.

Reduced sampling rate. The original firmware uses
an ADC sampling rate of 200 samples per second. In the
following experiments, we reduced it to 2 samples per second
to facilitate synchronization between the emulated hardware
and the MSP430 ADC port. These synchronization issues do
not reflect a deficiency of DrE, but instead are the byproduct
of our three-component hardware emulation and the added
low-pass filter on the ADC input. They would not be present
in the original non-emulated hardware, and so attacks would
work at the original sampling rate.

Roughly speaking, in the case of 200 Hz sampling rate,
the signal that the attacker will need to generate to ensure
the firmware reads the same sequence of ADC outputs will
have the same shape as in the case of 2 samples per second,
but because it is transmitted faster, it will be “shrunk.” For
example, assume that DrE’s output indicates that the sec-
ond ADC reading should be larger than the first one. In
the 2 Hz case, the amplitude should rise in approximately
0.5 seconds after the first reading. In the 200 Hz case, the
amplitude should rise in approximately 0.005 seconds after
the first reading.

6.2 Experiments

Once the ADC configuration is set, a signal pattern corre-
sponds to specific voltage levels at the time the ADC reads
a sample. In the first set of experiments, we applied volt-
age patterns produced by our symbolic execution tool to the
ADC-enabled MSP430 pin directly. Each pattern triggered
the corresponding gesture recognition in almost 100% of
cases: due to internal ADC noise, a negligible number of ges-
tures were not recognized correctly. We also observed spo-
radic voltage spikes that randomly triggered gesture recog-
nition even though no pattern was sent.

In the second set of experiments, we carry out a complete
signal spoofing attack and measure how accurately we can
transmit signal patterns over the air. As an attacker we
used another USRP B210 at 903 MHz. We carry out the
experiments in the following setting: the attacker’s USRP
and the receiving antenna were placed 2 feet apart within
line of sight of each other. This setting corresponds to use
cases described in [18] (in which reported accuracies were
greater than 90% at the distance of 2 feet).

In our experiments we were able to successfully spoof all
8 gestures, often by sending just one copy of the signal pat-
tern. The chance (based on 100 experiments) that a single
pattern is recognized as the corresponding gesture by AllSee
is shown in the third column of Table[3l The second column
shows the number of transmissions per signal pattern. The
more transmissions the attacker needs to send, the longer
(in milliseconds) it takes him to spoof a gesture. Note that
in our experiments we reduced the sampling rate; it is pos-
sible (and expected) that the success rate will be lower for
the original sampling rate of 200Hz.

We use the numbers from Table [3| to compute the time
for an attacker to spoof a gesture, on average and with 80%
and 90% quantiles. Before we describe the actual times, we
need to take into account some of the AllSee control logic.
In order to avoid random human motion near the device

# of samples in

Gesture Success %

pattern
Flick 148 39%
Push 68 63%
Pull 100 56%
Double Flick 36 81%
Punch 84 58%
Reverse Punch 84 66%
Zoom in 52 77%
Zoom out 52 79%

Table 3: Percentage of 100 transmissions of each spoofed
pattern that successfully triggered recognition of the asso-
ciated gesture. The second column is the number of trans-
missions that must be sent for that pattern.

Simple Gesture Average 80% quantile  95% quantile

Flick 184 241 448
Push 54 55 102
Pull 89 98 182
Double Flick 22 17 32
Punch 72 78 145
Reverse Punch 64 63 117
Zoom in 34 28 53
Zoom out 33 27 50

Gesture with guard  Average 80% quantile 95% quantile

Flick 234 390 726
Push 67 117 218
Pull 110 181 337
Double Flick 27 54 101
Punch 89 152 283
Reverse Punch 78 126 235
Zoom in 41 72 135
Zoom out 40 69 129

Table 4: Time (in seconds) before a gesture is successfully
spoofed assuming 2 samples per second. Upper part: single
gestures. Lower part: combined with guard gesture.

from being classified as the target gestures, AllSee uses the
double flick gesture as a “guard” that must be performed
for AllSee to start accepting subsequent gesture commands.
This means that forcing a gesture to be recognized actually
requires spoofing two sub-gestures.

Table 4] shows the time (in seconds) for a gesture to be
successfully spoofed at sampling rate of 2 samples/sec. The
upper part of the table shows the times without the double-
flick preamble. The lower part corresponds to the case when
each gesture must be preceded by the double-flick preamble.
For 7 gestures out of 8, it takes less then 90 seconds on aver-
age to be spoofed. If the double-flick preamble is required,
for 7 gestures out of 8 it takes less then 110 seconds to be
spoofed on the average. For the original sampling rate of
200 samples/sec, assuming the same probabilities as in Ta-
ble [3} gesture spoofing would be 100 times faster: it would
take less then 3.5 seconds including double-flick preamble to
spoof 7 gestures out of 8 with 95% probability.

Finally we set the distance between the attacker and AllSee
to six feet and had people walk occasionally in the vicinity.
Even in this environment, for which AllSee was not designed,
we were able to successfully spoof four of the eight gestures.

7. RELATED WORK

FIE [10] is an existing tool for the symbolic execution of
MSP430 firmware source code that built on an earlier x86
system, KLEE [8]. In our experiments, FIE often produced



a large number of paths that are, in fact, infeasible with
properly functioning hardware. It also omits important (and
sometimes the only reachable) paths. Overall FIE’s explicit
design goal of exhaustively exploring all code paths results
in shallow code coverage, making it hard for FIE to reach
points of interest in non-trivial firmware.

Modular approaches for (non-directed) symbolic execu-
tion appeared in several previous papers. In compositional
symbolic execution [16], a set of execution paths of a func-
tion can be represented as a function summary. In [16], func-
tion summaries are built using the top-to-bottom approach.
This approach is well-suited for increasing code coverage but
it can take a long time to reach a specific point in the code
(e.g., if it is reached only when a rare condition is satisfied).
A demand-driven variant of this approach [3| inherits the
same problems. In this paper, we develop a bottom-up ap-
proach instead. This allows us to capture the constraints
defining reachability of the target program point early in
the analysis. We use the final forward pass, after stitching
function summaries, to eliminate infeasible paths.

Under-constrained symbolic execution [12[26] checks sin-
gle functions. Executing functions in isolation is part of our
approach. Because we deal with line reachability problem,
we developed a method for propagating constraints between
execution paths of different functions and for stitching these
paths into interprocedural paths from the program’s entry
point to the target line.

Similar to our paper, [23] uses symbolic execution to tackle
line reachability problems. In [23], the execution starts at
the target function, with function parameters and global
variables replaced by symbolic values.

The modular approach in [23] is rather coarse-grained.
When the execution encounters a call to a function that
does not belong to the shortest call chain, it does not try
to summarize it but instead steps into this function and
continues normally. This results in (1) a long chain of inner
calls which causes path explosion and makes it hard and/or
unlikely to reach the target, spending most of the time on
paths that do not reach the target; (2) the same function
must be re-executed multiple times even when the calling
context is the same. Our approach is more flexible. It re-uses
previously analyzed inner calls and thus avoids re-executing
the same execution paths. Another difference is that [23]
checks whether two paths can be concatenated by executing
them. We use a constraint propagation/rewrite subsystem
instead to efficiently check if a chain of execution paths is
feasible. In the common case when there are many paths to
be checked, we round-robin between k shortest call chains.

Finally, all symbolic execution tools surveyed in this sec-
tion [31|12,/16,[23}/26] (except FiE [10]) lack appropriate in-
terrupt and memory models to be applied to embedded
firmware.

8. SENSOR SPOOFING LIMITATIONS

In this paper, we focused on systems where (a) control
logic is implemented in software, and (b) it is possible to
define unwanted (and thus wanted by the attacker) states.

There are also other kinds of sensor spoofing attacks. If
control logic is implemented in hardware or a sensor-specific
property is used for the attack, symbolic execution of the
firmware may not be very useful. For example, in [24] sen-
sor saturation was used to generate fake drops in an infu-
sion pump and cause change in the amount of injected flu-

ids. Furthermore, many sensors simply produce binary or
numeric values, in which case symbolic execution is not as
important as physical spoofing itself. For other systems it
may be challenging for the adversary to define the unwanted
behavior of the target firmware.

In this paper we used AllSee as a running example and
dealt with the relatively simple case of wireless signals. Sen-
sor spoofing can be harder for other types of sensors, e.g.,
in [30] the authors used sound to cause resonation in drones’
internal gyroscopes forcing the drones to crash.

9. CONCLUSION

In this paper we initiated the exploration of program anal-
ysis tools for synthesizing sensor spoofing attacks. Specifi-
cally, we show how an adversary can use program analysis
of a device’s source code to find sensor inputs that cause the
program to “believe” that it received a certain signal. We
translated the problem of signal pattern extraction into a
line reachability problem—which is well-suited for symbolic
execution. We then presented a new symbolic execution
tool, DrE, that aims to solve this problem for the MSP430
family of microcontrollers.

DrE uses a combination of traditional static analysis tech-
niques and a bottom-up variant of directed compositional
symbolic execution. By combining control flow and call
graph information with interprocedural data dependencies
collected during symbolic execution, DrE is able to filter
out a significant number of infeasible paths and generate
conditions on the environmental inputs that cause desired
behavior in the MSP430 firmware.

As a case study we applied DrE to the AllSee gesture
recognition system and were able to extract signal patterns
for all of its gestures. We then manually converted digi-
tal signal patterns into physical ones using the ADC sen-
sor specification. This resulted in a complete, end-to-end
proof-of-concept signal spoofing attack against the AllSee
firmware when run with emulated sensor hardware. The at-
tack enables the attacker to control AllSee-equipped devices
without their owner’s knowledge or consent. In the ideal
“noise-free” environment, we were able to successfully spoof
all eight gestures.

We believe that our techniques will generalize to other
types of sensor-based systems and physical modalities, par-
ticularly when converting from digital sensor readings back
to physical signals is straightforward (as was the case with
AllSee). Examples may include light, sound, and other sen-
sors. Converting the digital patterns provided by program
analysis into a physical signal is still sensor-specific, and, in
many cases, going to be much more challenging than the
relatively simple case of wireless signals used by AllSee. We
leave full exploration of such sensors to future work.
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APPENDIX

1
2 #define THRESHOLD 15
3 int adc = 0;
1 #define THRESHOLD 15 1 get_acceleration(int mode) {
2 int adc = 0; 5 int i = 0;
3 int process_adc() { 6 __bis_SR_register (CPUOFF + GIE);
1 int val = 0, val_prev = 0, i = 0, diff = 0, j = 7 while (adc >= 15) {
0; 8 i++;
5 __bis_SR_register (CPUOFF + GIE); 9 __bis_SR_register (CPUOFF + GIE);
6 val = adc; 10 ¥
7 while (diff < THRESHOLD) { 11 if(i > 15 && (mode == ’a’)) return 1;
8 val = adc; 12 else if (mode == ’a’) return 2;
9 diff = val-val_prev; 13 else return 3;
10 i++; 14}
11 val_prev = val; 15
12 __bis_SR_register (CPUOFF + GIE); 16 int main() {
13 i 17 int val = 0, val_repv = 0;
14 if (diff <= 20) return 20; 18 int tick = 0;
15 if (diff <= 100) return 100; 19 int acceleration[] = {0, 0, 0};
16 if (diff <= 300) return 300; 20 int j = 0;
17 return 500; 21 int mode;
18} 22 klee_make_symbolic (&mode, sizeof (mode), "mode");
19 23 while (1) {
20 int main() { 24 acceleration[j] = get_acceleration(mode);
int val = 0, val_repv = 0; 25 j++s
int tick = 0; 26 if (j==3) j=0;
int acceleration = 0; 27 if ( (acceleration[0] == 1) &&
__bis_SR_register (CPUOFF + GIE); 28 (acceleration[1] == 1) &&
while (1) { 29 (acceleration[2] == 1))
if (tick >= 1000) { // Wait for settling down 30 break;
acceleration = process_adc(); 31 ¥
if (acceleration == 20) assert(0); 32 assert (0);
3 33 return O0;
tick++; 34 }
¥ 35
36 int num_of_adc_reads = 0;
} 37 void __attribute__ ((interrupt (ADC10_VECTOR)))
34 ADC10_ISR (void)
35 int num_of_adc_reads = 0; 38 {
36 void __attribute__ ((interrupt (ADC10_VECTOR))) 39 adc = ADC1O0MEM;
ADC10_ISR (void) { 10 num_of_adc_reads++;
37 adc = ADC10MEM; 11 __bic_SR_register_on_exit (CPUOFF);
38 num_of_adc_reads++; 12}
I[: N __bic_SR_register_on_exit (CPUOFF); Figure 9: Synthetic example 2

Figure 8: Synthetic example 1
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(a) Flick original (b) Flick generated (c) Push original (d) Push generated

(e) Pull original (f) Pull generated (g) Double Flick original (h) Double Flick generated
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Figure 10: AllSee original (left) and generated by DrE (right) gesture patterns. Original gesture patterns were extracted
from [18] unmodified.
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(a) Punch original (b) Punch generated (c) Lever original (d) Lever generated
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Figure 11: AllSee original (left) and generated by DrE (right) gesture patterns (continuation). Original gesture patterns were
extracted from [18] unmodified.
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(a) Original (flick) (b) Emulation (flick) (c) Original (punch) (d) Emulation (punch)
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Figure 12: Our emulation (right) vs AllSee original (left). Original gesture patterns were extracted from unmodified.
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