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Abstract
We initiate the study of privacy in pharmacogenetics,

wherein machine learning models are used to guide med-
ical treatments based on a patient’s genotype and back-
ground. Performing an in-depth case study on privacy
in personalized warfarin dosing, we show that suggested
models carry privacy risks, in particular because attack-
ers can perform what we call model inversion: an at-
tacker, given the model and some demographic infor-
mation about a patient, can predict the patient’s genetic
markers.

As differential privacy (DP) is an oft-proposed solu-
tion for medical settings such as this, we evaluate its ef-
fectiveness for building private versions of pharmacoge-
netic models. We show that DP mechanisms prevent our
model inversion attacks when the privacy budget is care-
fully selected. We go on to analyze the impact on utility
by performing simulated clinical trials with DP dosing
models. We find that for privacy budgets effective at pre-
venting attacks, patients would be exposed to increased
risk of stroke, bleeding events, and mortality. We con-
clude that current DP mechanisms do not simultaneously
improve genomic privacy while retaining desirable clin-
ical efficacy, highlighting the need for new mechanisms
that should be evaluated in situ using the general method-
ology introduced by our work.

1 Introduction

In recent years, technical advances have enabled in-
expensive, high-fidelity molecular analyses that char-
acterize the genetic make-up of an individual. This
has led to widespread interest in personalized medicine,
which tailors treatments to each individual patient using
genotype and other information to improve outcomes.
Much of personalized medicine is based on pharma-
cogenetic (sometimes called pharmacogenomic) mod-
els [3, 14, 21, 40] that are constructed using supervised

machine learning over large patient databases contain-
ing clinical and genomic data. Prior works [36, 37] in
non-medical settings have shown that leaking datasets
can enable de-anonymization of users and other privacy
risks. In the pharmacogenetic setting, datasets them-
selves are often only disclosed to researchers, yet the
models learned from them are made public (e.g., pub-
lished in a paper). Our focus is therefore on determining
to what extent the models themselves leak private infor-
mation, even in the absence of the original dataset.

To do so, we perform a case study of warfarin dosing,
a popular target for pharmacogenetic modeling. Warfarin
is an anticoagulant widely used to help prevent strokes in
patients suffering from atrial fibrillation (a type of irregu-
lar heart beat). However, it is known to exhibit a complex
dose-response relationship affected by multiple genetic
markers [43], with improper dosing leading to increased
risk of stroke or uncontrolled bleeding [41]. As such,
a long line of work [3, 14, 16, 21, 40] has sought phar-
mocogenetic models that can accurately predict proper
dosage based on patient clinical history, demographics,
and genotype. A review of this literature is given in [23].

Our study uses a dataset collected by the Interna-
tional Warfarin Pharmocogenetics Consortium (IWPC),
to date the most expansive such database containing de-
mographic information, genetic markers, and clinical
histories for thousands of patients from around the world.
While this particular dataset is publicly-available in a de-
identified form, it is equivalent to data used in other stud-
ies that must be kept private (e.g., due to lack of consent
to release). We therefore use it as a proxy for a private
dataset. The paper authored by IWPC members [21] de-
tails methods to learn linear regression models from this
dataset, and shows that using the resulting models to pre-
dict initial dose outperforms the standard clinical regi-
men in terms of absolute distance from stable dose. Ran-
domized trials have been done to evaluate clinical effec-
tiveness, but have not yet validated the utility of genetic
information [27].
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Figure 1: Mortality risk (relative to current clinical practice)
for, and VKORC1 genotype disclosure risk of, ε-differentially
private linear regression (LR) used for warfarin dosing (over
five values of ε , curves are interpolated). Dashed lines corre-
spond to non-private linear regression.

Model inversion. We study the degree to which these
models leak sensitive information about patient geno-
type, which would pose a danger to genomic privacy. To
do so, we investigate model inversion attacks in which
an adversary, given a model trained to predict a specific
variable, uses it to make predictions of unintended (sensi-
tive) attributes used as input to the model (i.e., an attack
on the privacy of attributes). Such attacks seek to take
advantage of correlation between the target, unknown at-
tributes (in our case, demographic information) and the
model output (warfarin dosage). A priori it is unclear
whether a model contains enough exploitable informa-
tion about these correlations to mount an inversion at-
tack, and it is easy to come up with examples of models
for which attackers will not succeed.

We show, however, that warfarin models do pose a
privacy risk (Section 3). To do so, we provide a gen-
eral model inversion algorithm that is optimal in the
sense that it minimizes the attacker’s expected mispre-
diction rate given the available information. We find that
when one knows a target patient’s background and stable
dosage, their genetic markers are predicted with signifi-
cantly better accuracy (up to 22% better) than guessing
based on marginal distributions. In fact, it does almost as
well as regression models specifically trained to predict
these markers (only ˜5% worse), suggesting that model
inversion can be nearly as effective as learning in an
“ideal” setting. Lastly, the inverted model performs mea-
surably better for members of the training cohort than
others (yielding an increased 4% accuracy) indicating a
leak of information specifically about those patients.

Role of differential privacy. Differential privacy (DP)
is a popular framework for designing statistical release
mechanisms, and is often proposed as a solution to pri-
vacy concerns in medical settings [10, 12, 45, 47]. DP is
parameterized by a value ε (sometimes referred to as the

privacy budget), and a DP mechanism guarantees that the
likelihood of producing any particular output from an in-
put cannot vary by more than a factor of eε for “similar”
inputs differing in only one subject.

Following this definition in our setting, DP guaran-
tees protection against attempts to infer whether a subject
was included in the training set used to derive a machine
learning model. It does not explicitly aim to protect at-
tribute privacy, which is the target of our model inversion
attacks. However, others have motivated or designed DP
mechanisms with the goal of ensuring the privacy of pa-
tients’ diseases [15], features on users’ social network
profiles [33], and website visits in network traces [38]—
all of which relate to attribute privacy. Furthermore, re-
cent theoretical work [24] has shown that in some set-
tings, including certain applications of linear regression,
incorporating noise into query results preserves attribute
privacy. This led us to ask: can genomic privacy benefit
from the application of DP mechanisms in our setting?

To answer this question, we performed the first end-
to-end evaluation of DP in a medical application (Sec-
tion 5). We employ two recent algorithms on the IWPC
dataset: the functional mechanism of Zhang et al. [47]
for producing private linear regression models, and Vin-
terbo’s privacy-preserving projected histograms [44] for
producing differentially-private synthetic datasets, over
which regression models can be trained. These algo-
rithms represent the current state-of-the-art in DP mech-
anisms for their respective models, with performance re-
ported by the authors that exceeds previous DP mecha-
nisms designed for similar tasks.

On one end of our evaluation, we apply a model in-
verter to quantify the amount of information leaked about
patient genetic markers by ε-DP versions of the IWPC
model. On the other end, we quantify the impact of
ε on patient outcomes, performing simulated clinical
trials via techniques widely used in the medical litera-
ture [4, 14, 18, 19]. Our main results, a subset of which
are shown in Figure 1, show a clear trade-off between
patient outcomes and privacy:

• “Small ε”-DP protects genomic privacy: Even though
DP was not specifically designed to protect attribute
privacy, we found that for sufficiently small ε (≤ 1),
genetic markers cannot be accurately predicted (see the
line labeled “Disclosure, private LR” in Figure 1), and
there is no discernible difference between the model
inverter’s performance on the training and validation
sets. However, this effect quickly vanishes as ε in-
creases, where genotype is predicted with up to 58%
accuracy (0.76 AUCROC). This is significantly (22%)
better than the 36% accuracy one achieves without the
models, and not far below (5%) the “best possible” per-
formance of a non-private regression model trained to
predict the same genotype using IWPC data.
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• Current DP mechanisms harm clinical efficacy: Our
simulated clinical trials reveal that for ε ≤ 5 the risk
of fatalities or other negative outcomes increases sig-
nificantly (up to 1.26×) compared to the current clini-
cal practice, which uses non-personalized, fixed dosing
and so leaks no information at all. Note that the range
of ε (> 5) that provides clinical utility not only fails to
protect genomic privacy, but are commonly assumed
to provide insufficient DP guarantees as well. (See the
line labeled “Mortality, private LR” in Figure 1.)

Put simply: our analysis indicates that in this setting
where utility is paramount, the best known mechanisms
for our application do not give an ε for which state-of-
the-art DP mechanisms can be reasonably employed.

Implications of our results. Our results suggest that
there is still much to learn about pharmacogenetic pri-
vacy. Differential privacy is suited to settings in which
privacy and utility requirements are not fundamentally
at odds, and can be balanced with an appropriate privacy
budget. Although the mechanisms we studied do not
properly strike this balance, future mechanisms may be
able to do so—the in situ methodology given in this pa-
per may help to guide such efforts. In settings where pri-
vacy and utility are fundamentally at odds, release mech-
anisms of any kind will fail, and restrictive access control
policies may be the best answer. The model inversion
techniques outlined here can help to identify these situa-
tions, and quantify the risks.

2 Background

Warfarin and Pharmacogenetics Warfarin, also
known in the United States by the brand name
Coumadin, is a widely prescribed anticoagulant medica-
tion. It is used to treat patients suffering from cardio-
vasvular problems, including atrial fibrillation (a type of
irregular heart beat) and heart valve replacement. By
reducing the tendency of blood to clot, at appropriate
dosages it can reduce risk of clotting events, particularly
stroke. Unfortunately, warfarin is also very difficult to
dose: proper dosages can differ by an order of magnitude
between patients, and this has led to warfarin’s status as
one of the leading causes of drug-related adverse events
in the United States [26]. Underestimating the dose can
result in failure to prevent the condition the drug was pre-
scribed to treat. Overestimating the dose can, just as se-
riously, lead to uncontrolled bleeding events because the
drug interferes with clotting. Because of these risks, in
existing clinical practice patients starting on warfarin are
given a fixed initial dose but then must visit a clinic many
times over the first few weeks or months of treatment in
order to determine the correct dosage which gives the de-
sired therapeutic effect.

Stable dose is assessed clinically by measuring the
time it takes for blood to clot, called prothrombin time.
This measure is standardized between different manufac-
turers as an international normalized ratio (INR). Based
on the patient’s indication for (i.e., the reason to pre-
scribe) warfarin, a clinician determines a target INR
range. After the fixed initial dose, later doses are mod-
ified until the patient’s INR is within the desired range
and maintained at that level. INR in the absence of anti-
coagulation therapy is approximately 1, while the desired
INR for most patients in anticoagulation therapy is in the
range 2–3 [5]. INR is the response measured by the phys-
iological model used in our simulations in Section 5.

Genetic variability among patients is known to play
an important role in determining the proper dose of war-
farin [23]. Polymorphisms in two genes, VKORC1 and
CYP2C9, are associated with the mechanism with which
the body metabolizes the drug, which in turn affects
the dose required to reach a given concentration in the
blood. Warfarin works by interfering with the body’s
ability to recycle vitamin K, which is used to regulate
blood coagulation. VKORC1, part of the vitamin K
epoxide reductase complex, is a component of the vi-
tamin K cycle. CYP2C9 encodes for a variant of cy-
tochrome P450, a family of proteins which oxidize a va-
riety of medications. Since each person has two copies
of each gene, there are several combinations of variants
possible. Following the IWPC paper [21], we represent
VKORC1 polymorphisms by single nucleotide polymor-
phism (SNP) rs9923231, which is either G (common
variant) or A (uncommon variant), resulting in three
combinations G/G, A/G, or A/A. Similarly, CYP2C9
variants are *1 (most common), *2, or *3, resulting in
6 combinations.

Taken together with age and height, Sconce et al. [40]
demonstrated that CYP2C9 and VKORC1 account for
54% of the total warfarin dose requirement variability.
In turn, a large literature (over 50 papers as of early
2013) has sought pharmacogenetic algorithms that pre-
dict proper dose by taking advantage of patient genetic
markers for CYP2C9 and VKORC1, together with de-
mographic information and clinical history (e.g., current
medications). These typically involve learning a simple
predictive model of stable dose from previously obtained
outcomes. We focus on the IWPC algorithm [21], a study
resulting in production of a linear regression model that,
when used to predict the initial dosage, has been shown
to provide improved outcomes in simulated clinical trials
using the IWPC dataset discussed below. Interestingly,
linear regression performed as well or better than a wide
variety of other, more complex machine learning tech-
niques. Some pharmacogenetic algorithms for warfarin
are currently also undergoing (real) clinical trials [1].
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Dataset The IWPC [21] collected data on patients who
were prescribed warfarin from 21 sites in 9 countries on
4 continents. The data was curated by staff at the Phar-
macogenomics Knowledge Base [2], and each site ob-
tained informed consent to use de-identified data from
patients prior to the study. Because the dataset contains
no protected health information, and the Pharmacoge-
nomics Knowledge Base has since made the dataset pub-
licly available for research purposes, it is exempt from
institutional review board review. However, the type of
data contained in the IWPC dataset is equivalent to many
other medical datasets that have not been released pub-
licly [3, 7, 16, 40], and are considered private.

Each patient was genotyped for at least one SNP in
VKORC1, and for variants of CYP2C9. In addition,
other information such as age, height, weight, race, and
other medications was collected. The outcome variable
is the stable therapeutic dose of warfarin, defined as the
steady-state dose that led to stable anticoagulation lev-
els. The patients in our dataset were restricted to those
with target INR in the range 2–3 (the vast majority of pa-
tients), as is standard practice with most studies of war-
farin dosing efficacy [3, 14]. We divided the data into
two cohorts based on those used in IWPC [21]. The first
(training) cohort was used to build a set of pharmacoge-
netic dosing algorithms. The second (validation) cohort
was used to test privacy attacks as well as draw samples
for the clinical simulations. To make the data suitable for
regression we removed all patients missing CYP2C9 or
VKORC1 genotype, normalized the data to the range [-
1,1], converted all nominal attributes into binary-valued
numeric attributes, and scaled each row into the unit
sphere. Our eventual training cohort consisted of 2644
patients, and our validation cohort of 853 patients, and
corresponds to the same training-validation split used by
IWPC (but without the missing values used in the IWPC
split).

3 Privacy of Pharmacogenetic Models

In this section we investigate the risks involved in re-
leasing regression models trained over private data, using
models that predict warfarin dose as our case study. We
consider a setting where an adversary is given access to
such a model, the warfarin dosage of an individual, some
rudimentary information about the data set, and possibly
some additional attributes about that individual. The ad-
versary’s goal is to predict one of the genotype attributes
for that individual. In order for this setting to make
sense, the genotype attributes, warfarin dose, and other
attributes known to the adversary must all have been in
the private data set. We emphasize that the techniques
introduced can be applied more generally, and save as fu-
ture work investigating other pharmacogenetic settings.

3.1 Attack Model
We assume an adversary who employs an inference algo-
rithm A to discover the genotype (in our experiments, ei-
ther CYP2C9 or VKORC1) of a target individual α . The
adversary has access to a linear model f trained over a
dataset D drawn i.i.d. from an unknown prior distribu-
tion p. D has domain X×Y , where X = X1, . . . ,Xd is the
domain of possible attributes and Y is the domain of the
response. α is represented by a single row in D, (xα ,yα),
and the attribute learned by the adversary is referred to as
the target attribute xα

t .
In addition to f , the adversary has access to marginals1

p1,...,d,y of the joint prior p, the dataset domain X×Y , α’s
stable dosage yα of warfrain, some information π about
f ’s performance (details in the following section), and
either of the following subsets xα

K of α’s attributes:

• Basic demographics: a subset of α’s demographic
data, including age (binned into eight groups by
the IWPC), race, height, and weight (denoted
xα

age,x
α
race, . . .). Note that this corresponds to a subset

of the non-genetic attributes in D.

• All background: all of p’s attributes except
CYP2C9 or VKORC1 genotype.

The adversary has black-box access to f . Unless it is
clear from the context, we will specify whether f is the
output of a DP mechanism, and which type of back-
ground information is available.

3.2 Model Inversion
In this section, we discuss a technique for inferring
CYP2C9 and VKORC1 genotype from a model designed
to predict warfarin dosing. Given a model f that takes in-
puts x and outputs a predicted stable dose y, the attacker
seeks to build an algorithm A that takes as input some
subset xα

K of attributes (corresponding to demographic or
additional background attributes from X), a known stable
dose yα , and outputs a prediction of xt (corresponding ei-
ther to CYP2C9 or VKORC1). We begin by presenting
a general-purpose algorithm, and show how it can be ap-
plied to linear regression models.

A general algorithm. We present an algorithm for
model inversion that is independent of the underlying
model structure (Figure 2). The algorithm works by esti-
mating the probability of a potential target attribute given
the available information and the model. Its operation is
straightforward: candidate database rows that are simi-
lar to what is known about α are run forward through

1These are commonly published in studies, and when it is clear from
the context, we will drop the subscript.

4



1. Input: zK = (x1, . . . ,xk,y), f , p1,...,d,y

2. Find the feasible set X̂⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1≤ i≤ k,xi = xi.

(b) f evaluates to y as given in zK : f (x) = y.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt

∏
1≤i≤d pi(xi)

(a) A0: Model inversion without performance statistics.

1. Input: zK = (x1, . . . ,xk,y), f , π , p1,...,d,y

2. Find the feasible set X̂⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1≤ i≤ k, xi = xi.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt
πy, f (x)

∏
1≤i≤d pi(xi)

(b) Aπ : Model inversion with performance statistics π .

Figure 2: Model inversion algorithm.

the model. Based on the known priors, and how well the
model’s output on that row coincides with α’s known
response value, the candidate rows are weighted. The
target attribute with the greatest weight, computed by
marginalizing the other attributes, is returned.

Below, we describe this algorithm in more detail. We
derive each step by showing how to compute the least
biased estimate of the target attribute’s likelihood, which
the model inversion algorithm maximizes to form a pre-
diction. As we reason below, this approach is optimal in
the sense that it minimizes the expected misclassification
rate when the adversary has no other information (i.e.,
makes no further assumptions) beyond what is given in
Section 3.1.

Derivation. We begin the description with a simpler
restricted case in which the model always produces the
correct response. Assume for now that f is perfect, i.e.,
it never makes a misprediction, and we can assume that
f (x) = y almost surely for any sample (x,y); this case is
covered by A0 in Figure 2. In the following, we assume
the sample corresponds to the individual α , and drop the
superscript for clarity. Suppose the adversary wishes to
learn the probability that xt takes a certain value xt , i.e.,
Pr [xt = xt |xK ,y], given some known attributes xK , re-
sponse variable y, and the model f . Here, and in the fol-
lowing discussion, the probabilities in Pr [·] expressions
are always over draws from the unknown joint prior p un-
less stated otherwise. Let X̂ = {x′ : x′K = xK and f (x′) =
y} be the subset of X matching the given information xK
and y. Then by straightforward computation,

Pr [xt |xK ,y] =
Pr [xt ,xK ,y]

Pr [xK ,y]
=

∑
x′∈X̂:x′t=xt

p(x′,y)∑
x′∈X̂ p(x′,y)

(1)

Now, the adversary does not know the true underlying
joint prior p. He only knows the marginals p1,...,d,y,
so any distribution with these marginals is a possible
prior. To characterize the unbiased prior that satisfies
these constraints, we apply the prinicipal of maximum

entropy2 [22], which in our setting gives the prior:

p(x,y) = p(y) ·∏1≤i≤d p(xi) (2)

Continuing with the previous expression, we now have,

Pr [xt |xK ,y] =

∑
x′∈X̂:x′t=xt

p(y)
∏

i p(x′i)∑
x′∈X̂ p(y)

∏
i p(x′i)

(3)

∝
∑

x′∈X̂:x′t=xt

∏
i p(x′i) (4)

This last step follows because the denominator is inde-
pendent of the choice of xt . Notice that this is exactly
the quantity that is maximized by the value returned by
A0 (Figure 2 (a)). This is the maximum a posteriori
probability (MAP) estimate, which minimizes the adver-
sary’s expected misclassification rate. Under these as-
sumptions, A0 is an optimal algorithm for model inver-
sion.

Aπ in Figure 2 (b) generalizes this reasoning to the
case where f is not assumed to be perfect, and the ad-
versary has information about the performance of f over
samples drawn from p. We model this information with
a function π , defined in terms of a random sample z from
p,

π(y,y′) = Pr
[
zy = y| f (zx) = y′

]
(5)

In other words, π(y,y′) gives the probability that the
true response drawn with attributes zx is y given that the
model outputs y′. We write πy,y′ to simplify notation. In
practice, π can be estimated using statistics commonly
released with models, such as confusion matrices or stan-
dardized regression error.

Because f is not assumed to be perfect in the general
setting, X̂ is defined slightly differently than in A0; the
second restriction, that f (xα) = yα , is removed. After
constructing X̂, Aπ uses the marginals and π to weight
each candidate x ∈ X̂ by the probability that f behaves
as observed (i.e., outputs f (x)) when the response vari-
able matches what the adversary knows to be true (i.e.,

2cf. Jaynes [22], “[The maximum entropy prior] is least biased es-
timate possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information.”
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y). Again, using the maximum entropy prior from before
gives the MAP estimate in the more general setting,

Pr [xt |xK ,yα , f ] =

∑
x′∈X̂:x′t=xt

Pr [x′,y, f (x′)]∑
x′∈X̂ Pr [x′,y, f (x′)]

(6)

=

∑
x′∈X̂:x′t=xt

Pr [y|x′, f (x′)] p(x′)∑
x′∈X̂ Pr [x′,y, f (x′)]

(7)

∝
∑

x′∈X̂:x′t=xt
πy, f (x′) (

∏
i p(x′i)) (8)

The second step follows from the independence of the
maximum entropy prior in our setting, and the fact that x
determines f (x) so Pr [ f (x′),x′] = Pr [x′].

Application to linear regression. Recall that a linear
regression model assumes that the response is a linear
function of the attributes, i.e., there exists a coefficient
vector w ∈ Rd and random residual error δ such that
y = wT x+ b+ δ for some bias term b. A linear regres-
sion model fL is then an estimate (ŵ, b̂) of w and the
bias term, which operates as: fL(x) = b̂+ ŵT x. It is typ-
ical to assume that δ has a fixed Gaussian distribution
N (0,σ2) for some variance σ . Most regression software
estimates σ2 empirically from training data, so it is of-
ten published alongside a linear regression model. Using
this the adversary can derive an estimate of π ,

π̂(y,y′) = PrN (0,σ2)[y− y′]

Steps 2 and 4 of Aπ may be expensive to compute if
|X̂| is large. In this case, one can approximate using
Monte Carlo techniques to sample members of X̂. For-
tunately, in our setting, the nominal-valued variables all
come from sets with small cardinality. The continuous
variables have natural discretizations, as they correspond
to attributes such as age and weight. Thus, step 4 can be
computed directly by taking a discrete convolution over
the unknown attributes without resorting to approxima-
tion.

Discussion. We have argued that Aπ is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Aπ

may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
illustrative purposes, consider a model taking one input
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Figure 3: Model inversion performance, as improvement
over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Aπ will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Aπ ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Aπ on
every α in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Aπ

against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.
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The results are given in Figure 3, which shows the
performance of Aπ and “ideal” multinomial regression
predicting VKORC1 and CYP2C9 on the training set.
The numbers are given relative to the baseline perfor-
mance obtained by always guessing the most probable
genotype based on the given marginal prior–36% accu-
racy on VKORC1, 75% accuracy on CYP2C9, and 0.5
AUCROC for both genotypes. We see that Aπ comes
close to ideal accuracy on VKORC1 (5% less accurate
with all background information), and actually exceeds
the ideal predictor in terms of AUCROC. This means that
Aπ does a better job predicting rare genotypes than the
ideal model, but does slightly worse overall, and may be
a result of the ideal model avoiding overfitting to uncom-
mon data points.

The results for CYP2C9 are quite different. Neither
Aπ or the ideal model were able to predict this geno-
type more accurately than baseline. This indicates that
CYP2C9 is difficult to predict using linear models, and
because we use a linear model to run Aπ in this case, it is
no surprise that it inherits this limitation. Both the ideal
model and Aπ slightly outperform baseline prediction in
terms of AUCROC, and Aπ comes very close to ideal
performance (within 2%). In one case Aπ does slightly
worse (0.2%) than baseline accuracy; this may be due to
the fact that the marginals and π̂ used by Aπ are approx-
imations to the true marginals and error distribution π .

We also evaluated Aπ on the validation set (using
a model f derived from the training set). We found
that both genotypes are predicted more accurately on
the training set than validation. For VKORC1, Aπ

was 3% more accurate and yielded an additional 4%
AUCROC. The difference was less pronounced with
CYP2C9, which was 1.5% more accurate with an ad-
ditional 2% AUCROC. Although these differences are
not as large as the aboslute gain over baseline prediction,
they persist across other training/validation splits. We
ran 100 instances of cross-validation, and measured the
difference between training and validation performance.
We found that we were on average able to better predict
the training cohort (p < 0.01).

4 Differentially-Private Mechanisms and
Pharmacogenetics

In the last section, we saw that linear models trained on
private datasets leak information about patients in the
training cohort. In this section, we explore the issue on
models and datasets for which differential privacy has
been applied.

As in the previous section, we take the perspective
of the adversary, and attempt to infer patients’ genotype
given differentially-private models and different types of

background information on the targeted individual. As
such, we use the same attack model, but rather than as-
suming the adversary has access to f , we assume ac-
cess to a differentially private version of the original
dataset D or f . We use two published differentially-
private mechanisms with publicly-available implementa-
tions: private projected histograms [44] and the func-
tional mechanism [47] for learning private linear regres-
sion models. Although full histograms are typically not
published in pharmacogenetic studies, we analyze their
privacy properties here to better understand the behavior
of differential privacy across algorithms that implement
it differently.

Our key findings are summarized as follows:

• Some ε values effectively protect genomic privacy
for DP linear regression. For ε ≤ 1, Aπ could not
predict VKORC1 better on the training set than the
validation set either in terms of accuracy or AU-
CROC. The same result holds on CYP2C9, but only
when measured in terms of AUCROC. Aπ ’s abso-
lute performance for these ε is not much better than
the baseline either: VKORC1 is predicted only 5%
better at ε = 1, and CYP2C9 sees almost no im-
provement.

• “Large”-ε DP mechanisms offer little genomic pri-
vacy. When ε ≥ 5, both DP mechanisms see a
statistically-significant increase in training set per-
formance over validation (p < 0.02), and as ε ap-
proaches 20 there is little difference from non-
private mechanisms (between 3%-5%).

• Private histograms disclose significantly more in-
formation about genotype than private linear re-
gression, even at identical ε values. At all tested
ε , private histograms leaked more on the train-
ing than validation set. This result holds even
for non-private regression models, where the AU-
CROC gap reached 3.7% area under the curve, ver-
sus the 3.9% - 5.9% gap for private histograms. This
demonstrates that the relative nature of differen-
tial privacy’s guarantee can lead to meaningful con-
cerns.

Our results indicate that understanding the implications
of differential privacy for pharmacogenomic dosing is a
difficult matter—even small values of ε might lead to un-
wanted disclosure in many cases.

Differential Privacy Dwork introduced the notion of
differential privacy [11] as a constructive response to an
impossibility result concerning stronger notions of pri-
vate data release. For our purposes, a dataset D is a
number m of vector, value pairs (xα1 ,yα1), . . . ,(xαm ,yαm)
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where α1, . . . ,αm are (randomized) patient identifiers,
each xαi = [xαi

1 , . . . ,xαi
d ] is a patient’s demographic infor-

mation, age, genetic variants, etc., and yαi is the stable
dose for patient αi. A (differential) privacy mechanism
K is a randomized algorithm that takes as input a dataset
D and, in the cases we consider, either outputs a new
dataset Dpriv or a linear model Mpriv (i.e., a real- valued
linear function with n inputs. We denote the set of possi-
ble outputs of a mechanism as Range(K).

A mechanism K achieves ε-differential privacy if for
all databases D1,D2 differing in at most one row, and all
S⊆ Range(K),

Pr[K(D1) ∈ S]≤ exp(ε)×Pr[K(D2) ∈ S]

Differential privacy is an information-theoretic guaran-
tee, and holds regardless of the auxiliary information an
adversary posesses about the database.

Differentially-private histograms. We first investi-
gate a mechanism for creating a differentially-private
version of a dataset via the private projected histogram
method [44]. DP datasets are appealing because an (un-
trusted) analyst can operate with more freedom when
building a model; he is free to select whichever algo-
rithm or representation best suits his task, and need not
worry about finding differentially-private versions of the
best algorithms.

Because the numeric attributes in our dataset are too
fine-grained for effective histogram computation, we first
discretize each numeric attribute into equal-width bins.
In order to select the number of bins, we use a heuristic
given by Lei [32] and suggested by Vinterbo [44], which
says that when numeric attributes are scaled to the in-
terval [0,1], the bin width is given by (log(n)/n)1/(d+1),
where n = |D| and d is the dimension of D. In our
case, this is implies two bins for each numeric attribute.
We validated this parameter against our dataset by con-
structing 100 differentially-private datasets at ε = 1 with
2,3,4, and 5 bins for each numeric attribute, and mea-
sured the accuracy of a dose-predicting linear regression
model over each dataset. The best accuracy was given
for k = 2, with the difference in means for k = 2 and
k = 3 not attributable to noise. When the discretized at-
tributes are translated into a private version of the orig-
inal dataset, the median value from each bin is used to
create numeric values.

To infer the private genomic attributes given a
differentially-private version Dε of a dataset, we can
compute an empirical approximation p̂ to the joint prob-
ability distribution p (see Section 3.1) by counting the
frequency of tuples in Dε . A minor complication arises
due to the fact that numeric values in Dε have been dis-
cretized and re-generated from the median of each bin.
Therefore, the likelihood of finding a row in Dε that

matches any row in DT or DV is low. To account for this,
we transform each numeric attribute in the background
information to the nearest median from the correspond-
ing attribute used in the discretization step when gener-
ating Dε . We then use p̂ to directly compute a prediction
of the genotype xt that maximizes Prp̂[xα

t = xt |xα
K ,y

α ].

Differentially-private linear regression. We also in-
vestigate use of the functional mechanism [47] for pro-
ducing differentially-private linear regression models.
The functional mechanism works by adding Laplacian
noise to the coefficients of the objective function used to
drive linear regression. This technique stands in contrast
to the more obvious approach of directly perturbing the
output coefficients of the regression training algorithm,
which would require an explicit sensitivity analysis of
the training algorithm itself. Instead, deriving a bound
on the amount of noise needed for the functional mecha-
nism involves a fairly simple calculation on the objective
function [47].

We produce private regression models on the IWPC
dataset by first projecting the columns of the dataset into
the interval [−1,1], and then scaling the non-response
columns (i.e., all those except the patient’s dose) of each
row into the unit sphere. This is described in the pa-
per [47] and performed in the publicly-available imple-
mentation of the technique, and is necessary to ensure
that sufficient noise is added to the objective function
(i.e., the amount of noise needed is not scale-invariant).
In order to inter-operate with the other components of
our evaluation apparatus, we re-implemented the algo-
rithm in R by direct translation from the authors’ Mat-
lab implementation. We evaluated the accuracy of our
implementation against theirs, and found no statistically-
significant difference.

Applying model inversion to the functional mech-
anism is straightforward, as our technique from Sec-
tion 3.2 makes no assumptions about the internal struc-
ture of the regression model or how it was derived. How-
ever, care must be taken with regards to data scaling, as
the functional mechanism classifier is trained on scaled
data. When calculating X̂ , all input variables must be
transformed by the same scaling function used on the
training data, and the predicted response must be trans-
formed by the inverse of this function.

Results on private models. We evaluated our infer-
ence algorithms on both mechanisms discussed above at
a range of ε values: 0.25, 1, 5, 20, and 100. For each
algorithm and ε , we generated 100 private models on
the training cohort, and attempted to infer VKORC1 and
CYP2C9 for each individual in both the training and val-
idation cohort. All computations were performed in R.
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Figure 4: Inference performance for genomic attributes over IWPC training and validation set for private histograms
(left) and private linear regression (right), assuming both configurations for background information. Dashed lines
represent accuracy, solid lines area under the ROC curve (AUCROC).

Figure 4 shows our results in detail. In the following, we
discuss the main takeaway points.

Private Histograms vs. Linear Regression. We
found that private histograms leaked significantly more
information about patient genotype than private lin-
ear regression models. The difference in AUCROC
for histograms versus regression models is statistically
significant for VKORC1 at all ε . As Figure 4 indi-
cates, the magnitude of the difference from baseline is
also higher for histograms when considering VKORC1,
nearly reaching 0.8 AUCROC and 63% accuracy, while
regression models achieved at most 0.75 AUCROC and
55–60% accuracy. The AUCROC performance for
VKORC1 was greater than the baseline for all ε . How-
ever, for CYP2C9 this result only held when assuming
all background information except genotype, and only
for ε ≤ 5; when we assumed only demographic informa-
tion, there was no significant difference between baseline
and private histogram performance.

Disclosure from Overfitting. In nearly all cases, we
were able to better infer genotype for patients in the
training set than those in the validation set. For pri-
vate linear regression, this result holds for VKORC1
at ε ≥ 5.0 for AUCROC. This is not an artifact of the
training/validation split chosen by the IWPC; we ran 10-
fold cross validation 100 times, measuring the AUCROC
difference between training and test set validation, and
found a similar difference between training and valida-
tion set performance (p < 0.01). The fact that the dif-
ference at certain ε values is not statistically significant
is evidence that private linear regression is effective at
preventing genotype disclosure at these ε . For private
histograms, this result held for VKORC1 at all ε , and

CYP2C9 at ε < 5 with all background information but
genotype.

Differences in Genotype. For both private regression
and histogram models, performance for CYP2C9 is strik-
ingly lower than for VKORC1. Private regression mod-
els performed no differently from the baseline, achiev-
ing essentialy no gain in terms of accuracy and at most
1% gain in AUCROC. We observe that this also held
in the non-private setting, and the ideal model achieved
the same accuracy as baseline, and only 7% greater AU-
CROC. This indicates that CYP2C9 is not well-predicted
using linear models, and Aπ performed nearly as well as
is possible.

5 The Cost of Privacy: Negative Outcomes

In addition to privacy, we are also concerned with the
utility of a warfarin dosing model. The typical ap-
proach to measuring this is a simple accuracy compar-
ison against known stable doses, but ultimately we’re
interested in how errors in the model will affect pa-
tient health. In this section, we evaluate the potential
medical consequences of using a differentially-private
regression algorithm to make dosing decisions in war-
farin therapy. Specifically, we estimate the increased risk
of stroke, bleeding, and fatality resulting from the use
of differentially-private warfarin dosing at several pri-
vacy budget settings. This approach differs from the
normal methodology used for evaluating the utility of
differentially-private data mining techniques. Whereas
evaluation typically ends with a comparison of simple
predictive accuracy against non-private methods, we ac-
tually simulate the application of a privacy-preserving
technique to its domain-specific task, and compare the
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Figure 5: Overview of the Clinical Trial Simulation.
PGx signifies the pharmacogenomic dosing algorithm,
and DP differential privacy. The trial consists of three
arms differing primarily on initial dosing strategy, and
proceeds for 90 days. Details of Kovacs and Intermoun-
tain protocol are given in Section 5.3.

outcomes of that task to those achieved without the use
of private mechanisms.

5.1 Overview
In order to evaluate the consequences of private genomic
dosing algorithms, we simulate a clinical trial designed
to measure the effectiveness of new medication regi-
mens. The practice of simulating clinical trials is well-
known in the medical research literature [4, 14, 18, 19],
where it is used to estimate the impact of various de-
cisions before initiating a costly real-world trial involv-
ing human subjects. Our clinical trial simulation follows
the design of the CoumaGen clinical trials for evaluat-
ing the efficacy of pharmacogenomic warfarin dosing al-
gorithms [3], which is the largest completed real-world
clinical trial to date for evaluating these algorithms. At
a high level, we train a pharmacogenomic warfarin dos-
ing algorithm and a set of private pharmacogenomic dos-
ing algorithms on the training set. The simulated trial
draws random patient samples from the validation set,
and for each patient, applies three dosing algorithms to
determine the simulated patient’s starting dose: the cur-
rent standard clinical algorithm, the non-private pharma-
cogenomic algorithm, and one of the private pharma-
cogenomic algorithms. We then simulate the patient’s

physiological respose to the doses given by each algo-
rithm using a dose titration (i.e., modification) protocol
defined by the original CoumaGen trial.

In more detail, our trial simulation defines three par-
allel arms (see Figure 5), each corresponding to a dis-
tinct method for assigning the patient’s initial dose of
warfarin:

1. Standard: the current standard practice of initially
prescribing a fixed 10mg/day dose.

2. Genomic: Use of a genomic algorithm to assign the
initial dose.

3. Private: Use of a differentially-private genomic al-
gorithm to assign initial dose.

Within each arm, the trial proceeds for 90 simulated days
in several stages, as depicted in Figure 5:

1. Enrollment: A patient is sampled from the pop-
ulation distribution, and their genotype and de-
mographic characteristics are used to construct an
instance of a Pharmacokinetic/Pharmacodynamic
(PK/PD) Model that characterizes relevant aspects
of their physiological response to warfarin (i.e.,
INR). The PK/PD model contains random vari-
ables that are parameterized by genotype and de-
mographic information, and are designed to capture
the variance observed in previous population-wide
studies of physiological response to warfarin [16].

2. Initial Dosing: Depending on which arm of the trial
the current patient is in, an initial dose of warfarin
is prescribed and administered for the first two days
of the trial.

3. Dose Titration: For the remaining 88 days of the
simulated trial, the patient administers a prescribed
dose every 24 hours. At regular intervals specified
by the titration protocol, the patient makes “clinic
visits” where INR response to previous doses is
measured, a new dose is prescribed based on the
measured response, and the next clinic visit is
scheduled based on the patient’s INR and current
dose. This is explained in more detail in Sections
5.3 and 5.4.

4. Measure Outcomes: The measured responses for
each patient at each clinic visit are tabulated, and
the risk of negative outcomes is computed.

5.2 Pharmacogenomic Warfarin Dosing
To build the non-private regression model, we use reg-
ularized least-squares regression in R, and obtained
15.9% average absolute error (see Figure 6). To build
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Figure 6: Pharmacogenomic warfarin dosing algo-
rithm performance measured against clinically-deduced
ground truth in IWPC dataset.

differentially-private models, we use two techniques: the
functional mechanism of Zhang et al. [47] and regres-
sion models trained on Vinterbo’s private projected his-
tograms [44].

To obtain a baseline estimate of these algorithms’ per-
formance, we constructed a set of regression models for
various privacy budget settings (ε = 0.25,1,5,20,100)
using each of the above methods. The average abso-
lute predictive error, over 100 distinct models at each
parameter level, is shown in Figure 6. Although the av-
erage error of the private algorithms at low privacy bud-
get settings is quite high, it is not clear how that will
affect our simulated patients. In addition to the mag-
nitude of the error, its direction (i.e., whether it under-
or over-prescribes) matters for different types of risk.
Futhermore, because the patient’s initial dose is subse-
quently titrated to more appropriate values according to
their INR response, it may be the case that a poor guess
for initial dose, as long as the error is not too significant,
will only pose a risk during the early portion of the pa-
tient’s therapy, and a negligible risk overall. Lastly, the
accuracy of the standard clinical and non-private phar-
macogenomic algorithms are moderate (~15% and 21%
error, respectively), and these are the best known meth-
ods for predicting initial dose. The difference in accu-
racy between these and the private algorithm is not ex-
treme (e.g., greater than an order of magnitude), so lack-
ing further information about the correlation between ini-
tial dose accuracy and patient outcomes, it is necessary
to study their use in greater detail. Removing this uncer-
tainty is the goal of our simulation-based evaluation.

5.3 Dose Assignment and Titration
To assign initial doses and control the titration process
in our simulation, we follow the protocol used by the
CoumaGen clinical trials on pharmacogenomic warfarin
dosing algorithms [3]. In the standard arm, patients are
given 10-mg doses on days 1 and 2, followed by dose ad-
justment according to the Kovacs protocol [29] for days 3

PK PD
Dose Concentration Response

Figure 7: Basic functionality of PK/PD modelling.

to 7, and final adjustment according to the Intermountain
Healthcare protocol [3] for days 8 to 90. Both the Ko-
vacs and Intermountain protocols assign a dose and next
appointment time based on the patient’s current INR, and
possibly their previous dose.

The genomic arm differs from the standard arm for
days 1-7. The initial dose for days 1-2 is predicted by
the pharmacogenomic regression model, and multiplied
by 2 [3]. On days 3-7, the Kovacs protocol is used,
but the prescribed dose is multiplied by a coefficient
Cpg that measures the ratio of the predicted pharmacoge-
nomic dose to the standard 10mg initial dose: Cpg =
(Initial Pharmacogenomic Dose)/(5 mg). On days 8-
90, the genomic arm proceeds identically to the standard
arm. The private arm is identical to the genomic arm, but
the pharmacogenomic regression model is replaced with
a differentially-private model.

To simulate realistic dosing increments, we assume
any combination of three pills from those available at
most pharmacies: 0.5, 1, 2, 2.5, 3, 4, 5, 6, 7, and 7.5
mg. The maximum dose was set to 15 mg/day, with pos-
sible dose combinations ranging from 0 to 15 mg in 0.5
mg increments.

5.4 PK/PD Model for INR response to
Warfarin

A PK/PD model integrates two distinct pharmacologic
models—pharmacokinetic (PK) and pharmacodynamic
(PD)—into a single set of mathematical expressions that
predict the intensity of a subject’s response to drug ad-
ministration over time. Pharmacokinetics is the course
of drug absorption, distribution, metabolism, and excre-
tion over time. Mechanistically, the pharmacokinetic
component of a PK/PD model predicts the concentration
of a drug in certain parts of the body over time. Phar-
macodynamics refers to the effect that a drug has on the
body, given its concentration at a particular site. This in-
cludes the intensity of its therapeutic and toxic effects,
which is the role of the pharmacodynamic component of
the PK/PD model. Conceptually, these pieces fit together
as shown in Figure 7: the PK model takes a sequences
of doses, produces a prediction of drug concentraation,
which is given to the PD model. The final output is the
predicted PD response to the given sequence of doses,
both measures being taken over time. The input/output
behavior of the model’s components can be described as
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the following related functions:

PKPDModel(genotype,demographics) 7→ Finr

Finr(doses, time) 7→ INR

The function PKPDModel transforms a set of patient
characteristics, including the relevant genotype and de-
mographic information, into an INR-response predictor
Finr. Finr(doses, t) transforms a sequence of doses, as-
sumed to have been administered at 24-hour intervals
starting at time = 0, as well as a time t, and produces
a prediction of the patient’s INR at time t. The func-
tion PKPDModel can be thought of as the routine that
initializes the parameters in the PK and PD models, and
Finr as the function that composes the initialized models
to translate dose schedules into INR measurements. For
further details of the PK/PD model, consult Appendix A.

5.5 Calculating Patient Risk

INR levels correspond to the coagulation tendency of
blood, and thus to the risk of adverse events. Sorensen
et al. performed a pooled analysis of the correlation be-
tween stroke and bleeding events for patients undergoing
warfarin treatment at varying INR levels [41]. We use the
probabilities for various events as reported in their analy-
sis. We calculate each simulated patient’s risk for stroke,
intra-cranial hemorrhage, extra-cranial hemorrhage, and
fatality based on the predicted INR levels produced by
the PK/PD model. At each 24-hour interval, we calcu-
lated INR and the corresponding risk for these events.
The sum total risk for each event across the entire trial
period is the endpoint we use to compare the arms. We
also calculated the mean time in therapeutic range (TTR)
of patients’ INR response for each arm. We define TTR
as any INR reading between 1.8–3.2, to maintain consis-
tency with previous studies [3, 14].

The results are presented in Figure 8 in terms of rela-
tive risk (defined as the quotient of the patient’s risk for
a certain outcome when using a particular algorithm ver-
sus the fixed dose algorithm). The results are striking: for
reasonable privacy budgets (ε ≤ 5), private pharmacoge-
nomic dosing results in greater risk for stroke, bleeding,
and fatality events as compared to the fixed dose pro-
tocol. The increased risk is statistically significant for
both private algorithms up to ε = 5 and all types of risk
(including reduced TTR), except for private histograms,
for which there was no significant increase in bleeding
events with ε > 1.

On the positive side, there is evidence that both algo-
rithms may reduce all types of risk at certain privacy lev-
els. Differentially-private histograms performed slightly
better, improvements in all types of risk at ε ≥ 20. Pri-
vate linear regression seems to yield lower risk of stroke

and fatality and increased TTR at ε ≥ 20. However, the
difference in bleeding risk for DPLR was not statistically
significant at any ε ≥ 20. These results lead us to con-
clude that there is evidence that differentially-private sta-
tistical models may provide effective algorithms for pre-
dicting initial warfarin dose, but only at low settings of
ε ≥ 20 that yield little privacy (see Section 4).

6 Related Work

The tension between privacy and data utility has been
explored by several authors. Brickell and Shmatikov [6]
found strong evidence for a tradeoff in attribute privacy
and predictive performance in common data mining tasks
when k-anonymity, `-diversity, and t-closeness are ap-
plied before releasing a full dataset. Differential privacy
arose partially as a response to Dalenius’ desideratum:
anything that can be learned from the database about
a specific individual should be learnable without access
to the database [9]. Dwork showed the impossibility of
achieving this result in the presence of utility require-
ments [11], and proposed an alternative goal that proved
feasible to achieve in many settings: the risk to one’s
privacy should not substantially increase as a result of
participating in a statistical database. Differential pri-
vacy formalizes this goal, and constructive research on
the topic has subsequently flourised.

Differential privacy is often misunderstood by those
who wish to apply it, as pointed out by Dwork and
others [13]. Kifer and Machanavajjhala [25] addressed
several common misconceptions about the topic, and
showed that under certain conditions, it fails to achieve
a privacy goal related to Dwork’s: nearly all evidence of
an individual’s participation should be removed. Using
hypothetical examples from social networking and cen-
sus data release, they demonstrate that when rows in a
database are correlated, or when previous exact statis-
tics for a dataset have been released, this notion of pri-
vacy may be violated even when differential privacy is
used. Part of our work extends theirs by giving a con-
crete examples from a realistic application where com-
mon misconceptions about differential privacy lead to
surprising privacy breaches, i.e., that it will protect ge-
nomic attributes from unwanted disclosure. We further
extend their analysis by providing a quantitative study of
the tradeoff between privacy and utility in the applica-
tion.

Others have studied the degree to which differential
privacy leaks various types of information. Cormode
showed that if one is allowed to pose certain queries re-
lating sensitive attributes to quasi-identifiers, it is pos-
sible to build a differentially-private Naive Bayes clas-
sifier that accurately predicts the sensitive attribute [8].
In contrast, we show that given a model for predicting a
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Figure 8: Trial outcomes for fixed dose, non-private linear regression (LR), differentially-private linear regression
(DPLR), and private histograms. Horizontal axes represent ε .

certain outcome from a set of inputs (and no control over
the queries used to construct the model), it is possible to
make accurate predictions in the reverse direction: pre-
dict one of the inputs given a subset of the other values.
Lee and Clifton [30] recognize the problem of setting ε

and its relationship to the relative nature of differential
privacy, and later [31] propose an alternative parameti-
zation of differential privacy in terms of the probabil-
ity that an individual contributes to the resulting model.
While this may make the privacy guarantee easier for
non-specialists to understand, its close relationship to the
standard definition suggests that it may not be effective
at mitigating the types of disclosures documented in this
paper; evaluating its efficacy remains future work, as we
are not aware of any existing implementations that sup-
port their definition.

The risk of sensitive information disclosure in medical
studies has been examined by many. Wang et al. [46],
Homer et al. [20] and Sankararaman et al. [39] show
that it is possible to recover parts of an individual’s geno-
type given partial genetic information and detailed statis-
tics from a GWAS. They do not evaluate the efficacy
of their techniques against private versions of the statis-
tics, and do not consider the problem of inference from
a model derived from the statistics. Sweeny showed that
a few pieces of identifying information are suitable to
identify patients in medical records [42]. Loukides et
al. [34] show that it is possible to identify a wide range
of sensitive patient information from de-identified clin-
ical data presented in a form standard among medical
researchers, and later proposed a domain-specific utility-
preserving scheme similar to k-anonymity for mitigating
these breaches [35]. Dankar and Emam [10] discuss the
use of differential privacy in medical applications, point-
ing out the various tradeoffs between interactive and non-
interactive mechanisms and the limitation of utility guar-
antees in differential privacy, but do not study its use in
any specific medical applications.

Komarova et al. [28] present an in-depth study of the
problem of partial disclosure. There is some similarity
between the model inversion attacks discussed here and
this notion of partial disclosure. One key difference is

that in the case of model inversion, an adversary is given
the actual function corresponding to a statistical estima-
tor (e.g., a linear model in our case study), whereas Ko-
marova et al. consider static estimates from combined
public and private sources. In the future we will inves-
tigate whether the techniques described by Komarova et
al. can be used to refine, or provide additional informa-
tion for, model inversion attacks.

7 Conclusion

We conducted the first end-to-end case study of the use
of differential privacy in a medical application, explor-
ing the tradeoff between privacy and utility that occurs
when existing differentially-private algorithms are used
to guide dosage levels in warfarin therapy. Using a new
technique called model inversion, we repurpose pharma-
cogenetic models to infer patient genotype. We showed
that models used in warfarin therapy introduce a threat
to patients’ genomic privacy. When models are pro-
duced using state-of-the-art differential privacy mecha-
nisms, genomic privacy is protected for small ε(≤ 1),
but as ε increases towards larger values this protection
vanishes.

We evaluated the utility of differential privacy mecha-
nisms by simulating clinical trials that use private mod-
els in warfarin therapy. This type of evaluation goes be-
yond what is typical in the literature on differential pri-
vacy, where raw statistical accuracy is the most common
metric for evaluating utility. We show that differential
privacy substantially interferes with the main purpose
of these models in personalized medicine: for ε values
that protect genomic privacy, which is the central privacy
concern in our application, the risk of negative patient
outcomes increases beyond acceptable levels.

Our work provides a framework for assessing the
tradeoff between privacy and utility for differential pri-
vacy mechanisms in a way that is directly meaningful for
specific applications. For settings in which certain levels
of utility performance must be achieved, and this tradeoff
cannot be balanced, then alternative means of protecting
individual privacy must be employed.
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A PK/PD Model Details

We adopted a previously-developed PK/PD INR model
to predict each patient’s INR response to previous dos-
ing choices [16]. The PK component of the model is a
two-compartment model with first-order absorption. A
two-compartment model assumes an abstract representa-
tion of the body as two discrete sections: the first being
a central compartment into which a drug is administered
and a peripheral compartment into which the drug even-
tually distributes. The central compartment (assumed
to have volume V1) represents tissues that equilibrate
rapidly with blood (e.g., liver, kidney, etc.), and the pe-
ripheral (volume V2) those that equilibrate slowly (e.g.,
muscle, fat, etc.). Three rate constants govern trans-
fer between the compartments and elimination: k12,k21,
for the central-peripheral and peripheral-central transfer,
and kel for elimination from the body, respectively. V1,
V2, k12, and k21 are related by the following equality:
V1k12 = V2k21. The absorption rate ka governs the rate
at which the drug enters the central compartment. In the
model used in our simulation, each of these parameters is
represented by a random variable whose distribution has
been fit to observed population measurements of War-
farin absorption, distribution, metabolism, and elimina-
tion [16]. The elimination-rate constant kel is parameter-
ized by the patient’s CYP2C9 genotype.

Given a set of PK parameters, the Warfarin concen-
tration in the central compartment over time is calcu-
lated using standard two-compartment PK equations for
oral dosing. Concentration in two-compartment pharma-
cokinetics diminishes in two distinct phases with differ-
ing rates: the α (“distribution”) phase, and β (“elimina-
tion”) phase. The expression for concentration C over
time assuming doses D1, . . . ,Dn administered at times
tD1 , . . . , tDn has another term corresponding to the effect
of oral absorption:

C(t) =
n∑

i=1

Di(Ae−αti +Be−β ti − (A+B)e−kati)

with ti = t−tDi and α , β satisfying αβ = k21kel, α+β =
kel + k12 + k21, and

A =
ka

V1

k21−α

(ka−α)(β −α)
B =

ka

V1

k21−β

(ka−β )(α−β )

Our model contains an error term with a zero-centered
log-normal distribution whose variance depends on
whether or not steady-state dosing has occurred; the term
is given in the appendix of Hamberg et al. [16].

PD Model The PD model used in our simulations is an
inhibitory sigmiod-Emax model. Recall that the purpose
of the PD model is to describe the physiological response
E, in this case INR, to Warfarin concentration at a partic-
ular time. Emax represents the maximal response, i.e., the

E = 1 EmaxCγ

Eγ

50+Cγ

A1 A2 A3 A4 A5 A6

A7 INR = BASE+ INRmax(1−A6A7)
λ

︷ ︸︸ ︷k−1
tr1 ≈ 11.6 h

︷︸︸︷k−1
tr2 ≈ 120 h

Figure 9: Overview of transit-compartment PD
model [16].

maximal inhibition of coagulation, and E50 the concen-
tration of Warfarin producing half-maximal inhibition.
Emax is fixed to 1, and E50 is a patient-specific random
variable that is a function of the patient’s VKORC1 geno-
type. A sigmoidocity factor γ is used to model the fact
that the concentration-effect response of Warfarin corre-
sponds to a sigmoid curve at lower concentrations. The
basic formula for calculating E at time t from concentra-
tion is: 1− (EmaxC(t)γ)/(Eγ

50 +C(t)γ). However, War-
farin exhibits a delay between exposure and anticoagu-
lation response. To characterize this feature, Hamberg
et al. showed that extending the basic Emax model with
a transit compartment model with two parallel chains is
adequate [16], as shown in Figure 9. The delay between
exposure and concentration is modeled by assuming that
the drug travels along two parallel compartment chains
of differing lengths and turnover rates. The transit rate
between compartments on the two chains is given by
two constants ktr1 and ktr2. The first chain consists of
six compartments, and the second a single compartment.
The first transit constant is a random zero-centered log-
normal variable, whereas empirical data did not reilably
support variance in the second [16]. The amount in a
given compartment i, Ai, at time t is described by a sys-
tem of coupled ordinary differential equations:

dA1

dt
= ktr1

(
1− EmaxC(t)γ

Eγ

50 +C(t)γ

)
− ktr1A1

dAn

dt
= ktr1(An−1−An),n = 2,3,4,5,6

dA7

dt
= ktr2

(
1− EmaxC(t)γ

Eγ

50 +C(t)γ

)
− ktr2A7

The final expression for INR at time t is given by solv-
ing for A7 and A7 starting from initial conditions Ai = 1,
and calculating the expression: log(INR) = log(Base+
INRmax(1−A6A7)

λ )+ εINR. In this expression, Base is
the patient’s baseline INR, INRmax is the maximal INR
(assumed to be 20 [16]), λ is a scaling factor derived
from empirical data [16], and εINR is a zero-centerd,
symmetrically-distributed random variable with variance
determined from empirical data [16].
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