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ABSTRACT
To prevent credential stuffing attacks, industry best practice now

proactively checks if user credentials are present in known data

breaches. Recently, some web services, such as HaveIBeenPwned

(HIBP) and Google Password Checkup (GPC), have started provid-

ing APIs to check for breached passwords. We refer to such services

as compromised credential checking (C3) services. We give the first

formal description of C3 services, detailing different settings and

operational requirements, and we give relevant threat models.

One key security requirement is the secrecy of a user’s pass-

words that are being checked. Current widely deployed C3 services

have the user share a small prefix of a hash computed over the

user’s password. We provide a framework for empirically analyz-

ing the leakage of such protocols, showing that in some contexts

knowing the hash prefixes leads to a 12x increase in the efficacy

of remote guessing attacks. We propose two new protocols that

provide stronger protection for users’ passwords, implement them,

and show experimentally that they remain practical to deploy.

1 INTRODUCTION
Password database breaches have become routine [8]. Such breaches

enable credential stuffing attacks, in which attackers try to com-

promise accounts by submitting one or more passwords that were

leaked with that account from another website. To counter cre-

dential stuffing, companies and other organizations have begun

checking if their users’ passwords appear in breaches, and, if so,

they deploy further protections (e.g., resetting the user’s passwords

or otherwise warning the user). Information on what usernames

and passwords have appeared in breaches is gathered either from

public sources or from a third-party service. The latter democra-

tizes access to leaked credentials, making it easy for others to help

their customers gain confidence that they are not using exposed

passwords. We refer to such services as compromised credential
checking services, or C3 services in short.

Two prominent C3 services already operate. HaveIBeenPwned

(HIBP) [45] was deployed by CloudFlare in 2018 and is used by

many web services, including Firefox [14], EVE Online [10], and

1Password [4]. Google released a Chrome extension called Pass-

word Checkup (GPC) [9, 44] in February 2019 that allows users to

check if their username-password pair appears in a compromised

dataset. Both services work by having the user share with the C3

server a prefix of the hash of their password or of the hash of their

username-password pair. This leaks some information about user

passwords, which is problematic should the C3 server be compro-

mised or otherwise malicious. But until now there has been no

thorough investigation into the damage from the leakage of current

C3 services or suggestions for protocols that provide better privacy.

We provide the first formal treatment of C3 services for different

settings, including exploration of their security requirements. A C3

service must provide secrecy of credentials provided by the client,

and ideally, it should also preserve secrecy of the leaked datasets

held by the C3 server. The computational and bandwidth overhead

for the client and especially the server should also be low. The

server might hold billions of leaked records, barring use of existing

cryptographic protocols for private set intersection (PSI) [29, 36],

which would use a prohibitive amount of bandwidth at this scale.

Current industry-deployed C3 services therefore reduce band-

width requirements by dividing the leaked data into buckets before

executing a PSI protocol. The client shares with the C3 server the

identifier of the bucket where their credentials would be found, if

present in the leak dataset. Then, the client and the server engage

in a protocol between the bucket held by the server and the cre-

dential held by the client to determine if their credential is indeed

in the leak. In current schemes, the prefix of the hash of the user

credential is used as the bucket identifier. The client shares the hash

prefix (bucket identifier) of their credentials with the C3 server.

Revealing hash prefixes of the credentials may be dangerous. We

outline an attack scenario against such prefix-revealing C3 services.

In particular, we consider a conservative setting where an attacker

obtains the hash prefix shared with the C3 server (possibly by

compromising the server) and also knows the username associated

with the queried credential. We rigorously evaluate the security of

HIBP and GPC under this threat model via a mixture of formal and

empirical analysis.

We start by considering users with a password appearing in

some leak and show how to adapt a recent state-of-the-art creden-

tial tweaking attack [40] to take advantage of the knowledge of

hash prefixes. In a credential tweaking attack, one uses the leaked

password to determine likely guesses (usually, small tweaks on

the leaked password). Via simulation, we show that our variant

of credential tweaking successfully compromises 80% of such ac-

counts within 1,000 guesses, given the transcript of a query made

to the HIBP server. This is 28% more than running the best known

credential tweaking attack, without knowledge of the transcript.

We also consider user accounts not present in a leak. Here we

found that the leakage from the hash prefix disproportionately

affects security compared to the previous case. For these user ac-

counts, obtaining the query to HIBP enables the attacker to guess

71% of passwords within 1,000 guesses, which is a 12x increase over

the success with no hash prefix information. Similarly, for GPC,

our simulation shows 34% of user passwords can be guessed in 10

or fewer attempts (and 61% in 1,000 attempts), should the attacker

learn the hash prefix shared with the GPC server.

The attack scenarios described are conservative because they

assume the attacker can infer which queries to the C3 server are

associated to which usernames. This may not be always possible.

Nevertheless, caution dictates that we would prefer schemes that

leak less. We therefore present two new C3 protocols, one that



checks for leaked passwords (like HIBP) and one that checks for

leaked username-password pairs (like GPC). Like GPC and HIBP,

we partition the password space before performing PSI, but we do

so in a way that reduces leakage significantly.

Our first scheme works when only passwords are queried. It

utilizes a novel approach that we call frequency-smoothing bucke-

tization (FSB). The key idea is to use an estimate of the distribution

of human-chosen passwords to assign passwords to buckets in a

way that flattens the distribution of accessed buckets. We show

how to obtain good estimates (using leaked data), and, via simula-

tion, that FSB reduces leakage significantly. In many cases the best

attack given the information leaked by the C3 protocol works no

better than having no information at all. While the benefits come

with some added computational complexity and bandwidth, we

show via experimentation that the operational overhead for the

FSB C3 server or client is comparable with the overhead from GPC,

while also leaking much less information than hash prefix based

C3 protocols.

We also describe a more secure bucketizing scheme that pro-

vides better privacy/bandwidth tradeoff for C3 servers that store

username-password pairs. In fact this scheme was also (indepen-

dently) proposed in [44], and Google plans to transition to using

it in their extension. It is a simple modification of their current

protocol. We refer to it as IDB, ID-based bucketization, as it uses

the hash prefix of only the user identifier for bucketization (instead

of the hash prefix of the username-password pair as currently used

by GPC). Not having password information in the bucket identifier

hides the user’s password perfectly from an attacker who obtains

the client queries (assuming that passwords are independent of

usernames). We implement IDB and show that the average bucket

size in this setting for a hash prefix of 16 bits is similar to that of

GPC (around 9,166 entries per bucket).

Contributions. In summary, the main contributions of this paper

are the following:

• We provide a formalization of C3 protocols and detail the

security goals for such services.

• We discuss various threat models for C3 services, and ana-

lyze the security of two widely deployed C3 protocols. We

show that an attacker that learns the queries from a client

can severely damage the security of the client’s passwords,

should they also know the client’s username.

• We give a new C3 protocol (FSB) for checking only leaked

passwords that utilizes knowledge of the human-chosen

password distribution to reduce the leakage.

• We give a new C3 protocol for checking leaked username-

password pairs (IDB) that bucketizes using only usernames.

• We analyze the performance and security of both new C3

protocols to show feasibility in practice.

We will release as public, open source code our server and client

implementations of FSB and IDB.

2 OVERVIEW
We investigate approaches to checking credentials present in previ-

ous breaches. Several third party services provide credential check-

ing, enabling users and companies to mitigate credential stuffing
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Figure 1: A C3S service allows a client to ascertain whether a username

and password appear in public breaches known to the service.

and credential tweaking attacks [24, 40, 46], an increasingly daunt-

ing problem for account security.

To date, such C3 services have not received any analysis, and in-

deed their design rationale has only been discussed in blog posts [5,

43]. We start by describing the architecture of such services, and

then we detail relevant threat models.

C3 settings. We provide a diagrammatic summary of the abstract

architecture of C3 services in Figure 1. A C3 server has access to
a breach database

˜𝒮 . We can think of
˜𝒮 as a set of size N , which

consists of either a set of passwords {w1, . . . ,wN } or username-

password pairs {(u,w1), . . . , (u,wN )}. This corresponds to two

types of C3 services — password-only C3 service and username-
password C3 service. For example, HIBP [5] is a password-only C3

service,
1
and Google’s service GPC [9] is an example of username-

password C3 service.

A client has as input a credential s = (u,w) and wants to deter-

mine if s is at risk due to exposure. The client and server therefore

engage in a set membership protocol to determine if s ∈ ˜𝒮 . Here,
clients can be users themselves (query C3 service using, say, a

browser extension), or other web services can query the C3 ser-

vice on behalf of their users. Of course, clients may make multiple

queries to the C3 service, though the number of queries might be

rate limited.

The ubiquity of breaches means that, nowadays, the breach data-

base
˜𝒮 will be quite large. A recently leaked compilation of previous

breached data contains 1.4 billion username password pairs [21].

The HIBP database has 501 million unique passwords [5]. Google’s

blog specifies that there are 4 billion username-password pairs in

their database of leaked credentials [43].

C3 protocols should be able to scale to handle set membership

requests for these huge datasets for millions of requests a day.

HIBP reported serving around 600,000 requests per day on average

[6]. The design of C3S should therefore not be computationally

expensive on the server-side. The number of network round trips

required must be low, and we will restrict attention to protocols

that can be completed with a single HTTPS request. Finally, we

will want to minimize bandwidth usage.

Threat model. Both the C3 server’s database
˜𝒮 and the client’s

queried password should be considered confidential.While breaches

1
Actually HIBP also allows checking if a user identifier (email) is leaked with a data

breach. For the purpose of this study, however, we only focus on the above mentioned

two C3 services.
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Credentials

checked

Name Bucket identifier B/w

(KB)

RTL

(ms)

Security

loss

Password

HIBP 20-bits of SHA1(w ) 15.9 208 12x

FSB Figure 6, q̄ = 10
2

261 527 2x

(Username, GPC 16-bits of Argon2(u ∥w ) 606 458 10x

password) IDB 16-bits of Argon2(u) 606 487 1x

Figure 2: Comparison of different C3 protocols. HIBP [5] and GPC [9]

are two C3 services used in practice. We introduce frequency-smoothing

bucketization (FSB) and identifier-based bucketization (IDB). Security loss

is computed assuming query budget q = 10
3
for users who has not been

compromised before.

are often made public, we prefer to treat
˜𝒮 as confidential even if it

consists of only public information. Of course, by querying on
˜𝒮 a

malicious client will fundamentally be able to check if values are

in the database. Ideally such a brute-force approach would be the

best possible attack.

A malicious C3 server could deviate from its protocol, for ex-

ample, by lying to the client about the contents of
˜𝒮 in order to

encourage them to pick a weak password. Monitoring techniques

might be useful to catch such misdeeds. We do not consider active

attacks further, as we focus instead on the more pressing issue of

not leaking (u,w) to an honest-but-curious server that follows its

protocol but wants to infer information about the user’s password.

In our threat model we consider targeted attacks, where the

attacker has access to the username of the querying user. This is

realistic, as an attacker can learn the username corresponding to

a query by linking IP addresses to usernames. An attacker who

compromises the C3 server might be able to find the IP address of

the querying user. The attacker can send tracking emails to all the

leaked usernames present in the breach dataset. If a client clicks on

the link present in the email, the attacker would be able to retrieve

the IP address of the user [27]. Thereby, the attacker can associate

the email corresponding to the query to the C3 server.

For the rest of the paper, we will focus on this threat model where

the attacker knows the querying user’s username, and refer to it as

a known-username attack (KUA). The attacker can take advantage

of the leaked data to find (any) leaked passwords associated to the

target username and tailor its guesses based on them.

For this paper, we will focus on online attack settings, where the

attacker tries to impersonate a user by guessing their password for

other web services online. These are easy to launch and are one of

the most prevalent forms of attacks [16, 28]. However, in an online

setting, the web service can monitor the failed login attempts and

lock an account out after too many incorrect password submissions.

Therefore, the attacker gets only a small number of attempts, known

as the guessing budget q of the attack.

Potential approaches. A C3 protocol requires, at core, a secure

setmembership query. Existing protocols for private set intersection

(a generalization of set membership) [22, 31, 41, 42] cannot currently

scale to the set sizes required in C3 settings, N ≈ 2
30
. For example,

the basic PSI protocol that uses an oblivious pseudorandom function

(OPRF) [31] computes yi = Fκ (ui ,wi ) for (ui ,wi ) ∈ ˜𝒮 where Fκ is

the secure OPRF with secret key κ (held by the server). It sends

all y1, . . . ,yN to the client, and the client obtains y = Fκ (u,w) for
its input (u,w) by obliviously computing it with the server. The

Symbol Description

u / 𝒰 user identifier, e.g. email / domain of users

w /𝒲 password / domain of passwords

𝒮 domain of credentials

˜𝒮 set of leaked credentials

p distribution of username-password pairs over 𝒰 ×𝒲
pw distribution of passwords over𝒲
p̂s estimate of pw used by C3 server

q query budget of an attacker

q̄ parameter to FSB, estimated query budget of an attack

Figure 3: Descriptions of the notation used in the paper.

client can then check if y ∈ {y1, . . . ,yN }. But clearly for large N
this is prohibitively expensive in terms of bandwidth. One can use

Bloom filters to more compactly represent the set y1, . . . ,yN , but

the result is still too large. While more advanced PSI protocols exist

that improve on these results asymptotically, they are unfortunately

not yet practical for this C3 setting [30, 31].

Practical C3 schemes therefore relax the security requirements,

allowing the protocol to leak some information about the client’s

queried (u,w) but hopefully not too much. To date no one has inves-

tigated how damaging the leakage of currently proposed schemes is,

which we turn to doing next. In Figure 2, we show all the different

settings for C3 we discuss in the paper, and compare their security

and performance.

3 BUCKETIZATION SCHEMES AND
SECURITY MODELS

In this section we formalize the security models for a class of C3

schemes that bucketize the breach dataset into smaller sets (buckets).

Intuitively, a straightforward approach for checking whether or not

a client’s credentials are present in a large set of leaked credentials

hosted by a server is to divide the leaked data into various buckets.

The client and server can then perform a private set intersection

between the user’s credentials and one of the buckets (potentially)

containing that credential. The bucketization makes private set

membership tractable, while only leaking to the server that the

password may lie in the set associated to a certain bucket.

We give a general framework to understand the security loss

and bandwidth overhead of different bucketization schemes, which

we use to evaluate existing C3 services.

Notation. For ease of description of the constructions that follow,

we fix some notation. Let 𝒲 be the set of all passwords, and pw
be the associated probability distribution; let 𝒰 be the set of all

user identifiers, and p be the joint distribution over 𝒰 ×𝒲 . We will

use 𝒮 to denote the domain of credentials being checked, i.e., for

password-only C3 service, 𝒮 =𝒲 , and for username-password C3

service, 𝒮 = 𝒰 ×𝒲 . Below we will use 𝒮 to give a generic scheme,

and specify the setting only if necessary to distinguish. Similarly,

s ∈ 𝒮 denotes a password or a username-password pair, based on

the setting. Let
˜𝒮 be the set of leaked credentials, and | ˜𝒮 | = N .

Let H be a cryptographic hash function from {0, 1}∗ 7→ {0, 1}ℓ ,

where ℓ is a parameter to the system. We use ℬ to denote the

set of buckets, and we let β : 𝒮 7→ ℬ∗ \ {�} be a bucketizing

function which maps a credential to a set of buckets. A credential

can be mapped to multiple buckets, and every credential is assigned

to at least one bucket. An inverse function to β is α : ℬ 7→ 𝒮∗,

3



Guess𝒜(q)
(u, w ) ←p 𝒰 ×𝒲
{w̃1, . . . , w̃q } ← 𝒜(u, q)
return w ∈ {w̃1, . . . , w̃q }

BucketGuess𝒜
′

β (q)

(u, w ) ←p 𝒰 ×𝒲 ; s ← (u, w )
h←$ β (s)
{w̃1, . . . , w̃q } ← 𝒜′(u, h, q)
return w ∈ {w̃1, . . . , w̃q }

Figure 4: The guessing games to evaluate security of different C3 schemes.

which maps a bucket to the set of all credentials it contains; so,

α(b) =
{
s ∈ 𝒮

��b ∈ β(s)}. Note, α(b) can be very large given it

considers all credentials in 𝒮 . We let α̃ be the function that denotes

the credentials in the buckets held by the C3 server, α̃ (b) = α(b)∩ ˜𝒮 .
The client sendsb to the server, and then the client and the server

engage in a set intersection protocol between {s} and α̃ (b).

Bucketization schemes. Bucketization is dividing the credentials
held by the server into smaller buckets. The client can use the

bucketizing function β to find the set of buckets for a credential,

and then pick one randomly to query the server. There are different

ways to bucketize the credentials.

In the first method, which we call hash-prefix-based bucketiza-

tion (HPB), the credentials are partitioned based on the first l bits
of a cryptographic hash of the credentials. GPC [9] and HIBP [5]

APIs use HPB. The distribution of the credentials is not considered

in HPB, which causes it to incur higher security loss, as we show

in Section 4.

We introduce a new bucketizingmethod, whichwe call frequency-

smoothing bucketization (FSB), that takes into account the dis-

tribution of the credentials and replicates credentials into multi-

ple buckets if necessary. The replication “flattens” the conditional

distribution of passwords given a bucket identifier, and therefore

vastly reduces the security loss. We discuss FSB in more details in

Section 5.

In both HPB and FSB, the bucketization function depends on the

user’s password. We give another bucketization approach — the

most secure one — that bucketizes based only on the hash prefix of

the user identifier. We call this identifier-based bucketizing (IDB).

The approach is only applicable for username-password C3 services.

We discuss IDB in Section 4.

Security measure. The goal of an attacker is to learn the user’s

password. We will focus on online-guessing attacks, where an at-

tacker tries to guess a user’s password over the login interfaces

provided by a web service. An account might be locked for toomany

incorrect guesses (for example, 10), and the attack fails. Therefore,

we will measure an attacker’s success given a certain guessing bud-

get, say q. We will always assume the attacker has access to the

username of the target user.

The security games are given in Figure 4. The game Guess mod-

els the situation in which no information besides the username is re-

vealed to the adversary about the password. In the gameBucketGuess,
the adversary also gets access to a bucket that is chosen according

to the credentials s = (u,w) and the bucketization function β .
We define the advantage against a game as the maximum proba-

bility that the game outputs 1. Therefore,

Advgs(q) = max

𝒜
Pr

[
Guess𝒜(q) ⇒ 1

]
,

and

Advb-gsβ (q) = max

𝒜′
Pr

[
BucketGuess𝒜

′

β (q) ⇒ 1

]
.

The probabilities are taken over the choices of username-password

pairs and the selection of bucket from the bucketizing function β .
Security loss, ∆β (q), of a bucketizing protocol β is defined as the

ratio of Advb-gsβ (q) over Advgs(q).
Note,

Pr

[
Guess𝒜(q) ⇒ 1

]
=

∑
u

Pr [w ∈ 𝒜(u,q) ∧U = u] .

To maximize this probability, the attacker must pick the q most

probable passwords for each user. Therefore,

Advgs(q) =
∑
u

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u] . (1)

In BucketGuessβ , the attacker has access to the bucket identifier,
and therefore the advantage is computed as

Advb-gsβ (q)

=
∑
u

∑
b

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u ∧ B = b]

=
∑
u

∑
b

max

(u,w1), ...,(u,wq )

∈α (b)

q∑
i=1

Pr [W = wi ∧U = u]

|β((u,wi ))|

The second equation follows because for b ∈ β((u,w)), each bucket

in β(w) is equally likely to be chosen, so

Pr [B = b | W = w ∧U = u] =
1

|β((u,w))|
.

The joint distribution of usernames and passwords is hard to

model. To simplify the equations, we divide the users targeted by

the attacker into two groups: compromised (users whose previously

compromised accounts are available to the attacker) and uncompro-
mised (users for which the attacker has no information other than

their usernames).

We assume the there is no direct correlation between the user-

name and password.
2
Therefore, an attacker cannot use the knowl-

edge of only the username to tailor guesses. This means that in

the uncompromised setting, we assume Pr [W = w | U = u] =
Pr [W = w]. Assuming independence of usernames and passwords,

we define in the uncompromised setting

λq = Advgs(q) = max

w1, ...,wq

q∑
i=1

Pr [W = wi ] . (2)

We give analytical and empirical analysis of security in this

setting, and show that the security of uncompromised users is

impacted by existing C3 schemes much more than that of compro-

mised users.

In the compromised setting, the attacker can use the username

to find other leaked passwords associated with that user, which

then can be used to tailor guesses [40, 46]. Analytical bounds on

2
Though prior work [33, 46] suggests knowledge of only username can improve

efficacy of guessing user passwords, the improvement is minimal. See Appendix A for

more on this analysis.

4



the compromised setting are less informative, so we evaluate this

setting empirically in Section 6.

Bandwidth. The bandwidth required for a bucketization scheme

is determined by the size of the buckets. The maximum size of the

buckets can be determined using a balls-and-bins approach [20],

assuming the client picks a bucket randomly from the possible set of

buckets β(s) for a credential s , and β(s) also maps s to a random set

of buckets. In totalm =
∑
s ∈ ˜𝒮 |β(s)| credentials (balls) are “thrown”

into n = |ℬ | buckets. Ifm > |ℬ | · log |ℬ |, then following the seminal

results on balls-and-bins game [20], we can show the maximum

number of passwords in a bucket with very high probability 1−o(1)

is less than
m
n ·

(
1 +

√
n logn
m

)
≤ 2 · mn . We will use this formula to

compute an upper bound on the bandwidth requirement for specific

bucketization schemes.

4 HASH-PREFIX-BASED BUCKETIZATION
Hash-prefix-based bucketization (HPB) schemes are a simple ways

to divide the credentials stored by the C3 server. In this type of C3

scheme, a prefix of the hash of the credential is used as the criteria

to group the credentials into buckets — all credentials that share

the same hash-prefix are assigned to the same bucket. The total

number of buckets depends on l , the length the hash-prefix. The

number of credentials in the buckets depends on both l and | ˜𝒮 |. We

will use H(l )(·) to denote the function that outputs the l-bit prefix
of the hash H(·). The client shares the hash prefix of the credential

they wish to check with the server. While a smaller hash prefix

reveals less information to the server about the user’s password, it

also increases the size of each bucket held by the server, which in

turn increases the communication overhead.

Hash-prefix-based bucketization is currently being used for cre-

dential checking in industry: HIBP [5] and GPC [9]. We introduce

a new HPB protocol called IDB that achieves zero security loss for

any query budget. Below we will discuss the design details of these

three C3 protocols.

HIBP [5]. HIBP uses HPB bucketization to provide a password-

only C3 service. They do not provide compromised username-

password checking. HIBPmaintains a database of leaked passwords,

which contains more than 501 million passwords [5]. They use the

SHA1 hash function, with prefix length l = 20; the leaked dataset is

partitioned into 2
20

buckets. The prefix length is chosen to ensure no

bucket is too small or too big. With l = 20, the smallest bucket has

381 passwords, and the maximum bucket has 584 passwords [19] .

This effectively makes the user’s password k-anonymous. However,

k-anonymity provides limited protection, as shown by numerous

prior works [35, 38, 49] and by our security evaluation.

The passwords are hashed using SHA1 and indexed by their hash

prefix for fast retrieval. A client computes the SHA1 hash of their

password w and queries HIBP with the 20-bit prefix of the hash;

the server responds with all the hashes that shares the same 20-bit

prefix. The client then checks if the full SHA1 hash ofw is present

among the set of hashes sent by the server. This is a weak form

of PSI that does not hide the leaked passwords from the client —

the client learns the SHA1 hash of the leaked passwords and can

perform brute force cracking to recover those passwords.

HIBP justifies this design choice by observing that passwords in

the server side leaked dataset are publicly available for download

on the Internet. Therefore, HIBP lets anyone download the hashed

passwords and usernames. This can be useful for parties who want

to host their own leak checking service without relying on HIBP.

However, keeping the leaked dataset up-to-date can be challenging,

making a third-party C3 service preferable.

HIBP trades server side privacy for protocol simplicity. The pro-

tocol also allows utilization of heavy caching on content delivery

networks (CDN), such as Cloudflare.
3
The caching helps HIBP to

be able to serve 8 million requests a day with 99% cache hit rate (as

of August 2018) [18]. The human-chosen password distribution is

“heavy-headed”, that is a small number of passwords are chosen by

a large number of users. Therefore, a small number of passwords

are queried a large number of times, which in turn makes CDN

caching much more effective.

GPC [9]. Google provides a username-password C3S, called Pass-

word Checkup (GPC). The client — a browser extension — computes

the hash of the username and password together using the Argon2

hash function with the first l = 16 bits to determine the bucket iden-

tifier. After determining the bucket, the client engages in a private

set intersection (PSI) protocol with the server. The full algorithm is

given in Figure 5. GPC uses an OPRF-based PSI protocol. Let F(·)(·)
be a key-homomorphic pseudo-random function (PRF) such that

Fa (·) × Fb (·) = Fab (·). Under the hood, F calls the hash function

H on u∥w , and then maps the hash output onto the elliptic curve

point for further computation.

The server has a secret key κ which it uses to compute the

yi = Fκ (ui ∥wi ). The client shares with the server the bucket id b
and the PRF output of username-password pair x = Fr (u∥w), for
some randomly sampled r . The server returns the bucket zb =
{yi

��H(ui ∥wi ) = b} and y = Fκ (x). Finally, the client completes

the OPRF computation by computing x̃ = F 1

r
(y) = Fκ (u∥w), and

checking if x̃ ∈ zb .
The GPC protocol is significantly more complex than HIBP, and

it does not allow easy caching by CDNs. However, it provides

secrecy of server side leaked data — the best case attack is to follow

the protocol to brute-force check if a password is present in the

leak database.

Bandwidth. HPB assigns every credential to only one bucket;

therefore, m =
∑
w ∈ ˜𝒮 |β(w)| = |

˜𝒮 | = N . The total number of

buckets n = 2
l
. Following the discussion from Section 3, maximum

bandwidth for a HPB C3S should be no more than 2 · mn = 2 · N
2
l .

We experimentally verified the bandwidth value, and the sizes

of the buckets for HIBP, GPC, and IDB are given in Section 7.

Security. HPB schemes like HIBP and GPC expose a prefix of

the user’s password (or username-password pair) to the server. As

discussed earlier, we assume the attacker knows the username of

the target user. In the uncompromised setting — where the user

identifier does not appear in the leaked data available to the attacker,

we show that giving the attacker the hash-prefix with a guessing

budget of q queries is equivalent to giving as many as q · |ℬ | queries
(with no hash-prefix) to the attacker.

3
https://www.cloudflare.com/
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Precomputation by C3 Server
Let

˜𝒮 = {(u1, w1), . . . , (uN , wN )}

∀j ∈ [0, . . . , 2
l − 1]

zj ←
{
Fκ (ui ∥wi )

��H(l )(u ∥w ) = j)
}

zj ←
{
Fκ (ui ∥wi )

��H(l )(u) = j)
}

Client C3 server

Input: (u, w ) Input: κ, z
r ←$ Zq
x ← Fr (u ∥w )

b ← H(l )(u ∥w )

b ← H(l )(u)
x,b

−−−−−−−−→

y,zb
←−−−−−−−−− y = Fκ (x )

x̃ ← F 1

r
(y)

Return x̃ ∈ zb

Figure 5: Algorithms for GPC, and the change in IDB given in the box.

F(·)(·) is a PRF.

Theorem 4.1. Let βHPB : 𝒮 7→ ℬ be the bucketization scheme
that, for a credential s ∈ 𝒮 , chooses a bucket that is a function of
H(l )(s), where s contains the user’s password. The advantage of an
attacker in this setting against previously uncompromised users is

Advb-gsβHPB
(q) ≤ Advgs(q · |ℬ |) .

Proof: First, note that |βHPB(·)| = 1, as every password is as-

signed to exactly one of the buckets. Following the discussion

from Section 3, assuming independence of usernames and pass-

words in the uncompromised setting, we can compute the advan-

tage against game BucketGuess as,

Advb-gsβHPB
(q) =

∑
b ∈ℬ

max
w1, ...,wq
∈α (b)

q∑
i=1

Pr [W = wi ] ≤ Advgs(q · |ℬ |)

We relax the α(b) notation to denote set of passwords (instead of

username-password pairs) assigned to a bucket b. The inequality
follows from the fact that each password is present in only one

bucket. If we sum up the probabilities of the top q passwords in

each bucket, the result will be at most the sum of the probabilities

of the top q · |ℬ | passwords. Therefore, the maximum advantage

achievable is Advgs(q · |ℬ |).
Theorem 4.1 only provides an upper bound on the security loss.

Moreover, for the compromised setting, the analytical formula is

less informative. So, we use empiricism to find the effective security

loss against compromised and uncompromised users. We report

all security simulation results in Section 6. Notably, with GPC with

hash prefix length l = 16, an attacker can guess passwords of 60.5%

of (previously uncompromised) user accounts in fewer than 1000

guesses, a 10x increase from the percent it can compromise without

access to the hash prefix. (See Section 6 for more results.)

Identifier-based bucketization (IDB). As our security analysis

and simulation show, the security degradation of HPB is dismal.

The main issue with those protocols is that the bucket identifier is

a deterministic function of the user password. We give a new C3

protocol that uses HPB style bucketing based on only username.

We call this identifier-based bucketization (IDB). IDB is defined for

username-password C3 schemes.

IDB is a slight modification of the protocol used by GPC—we use

the hash-prefix of the username, H(l )(u), instead of the hash-prefix

of the username-password combination, H(l )(u ∥w), as a bucket

identifier. The scheme is described in Figure 5, using the changes

in the boxed code. The bucket identifier is computed completely

independent of the password (assuming username is independent of

the password). Therefore, the attacker gets no additional advantage

for knowing the bucket identifier.

Because IDB uses the hash-prefix of the username as the bucket

identifier, two hash computations are required on the client side

for each query (as opposed to one for GPC). With most modern

devices, this is not a significant computing burden, but the protocol

latency may be impacted, since we use a slow hash (Argon2). We

show experimentally how the extra hash computation affects the

latency of IDB in Section 7.

Since IDB does not use the user’s password to determine the

bucket identifier, there is no security loss.

Theorem 4.2. With the IDB protocol, for all q ≥ 0

Advb-gs
IDB
(q) = Advgs(q).

We provide the proof of this theorem in Appendix C. Because

the bucket identifiers are chosen independent of the passwords, the

conditional probability of the password given the bucket identifier

remains the same as the probability without knowing the bucket

identifier.

Overall, we can use a form of HPB to create a username-password

C3S scheme with no security loss, but the password-only C3S

schemes constructed using HPB lead to significant security loss.

In the next section we solve this problem by introducing a more

secure password-only C3S scheme.

5 FREQUENCY-SMOOTHING
BUCKETIZATION

In the previous section we show how to build a username-password

C3 service that does not degrade security. However, many services,

such as HIBP, only provide a password-only C3 service. HIBP does

not store username-password pairs so, should the HIBP server ever

get compromised, an attacker cannot use their leak database to

mount credential stuffing attacks. Moreover, IDB cannot be ex-

tended in any useful way to protect password-only C3 services.

Therefore, we introduce a new bucketization scheme to build

secure password-only C3 services. We call this scheme frequency-

smoothing bucketization (FSB). FSB assigns a password to multiple

buckets based on its probability — frequent passwords are assigned

to many buckets. Replicating a password into multiple buckets effec-

tively reduces the conditional probabilities of that password given

a bucket identifier. We do so in a way that makes the conditional

probabilities of popular passwords similar to those of unpopular

passwords to make it harder for the attacker to guess the correct

password. FSB, however, is only effective for non-uniform creden-

tial distributions, such as password distributions.
4
Therefore, FSB

4
Usernames (e.g., emails) are unique for each users, so the distribution of usernames
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βFSB(w ) :

γ ← min

{
|ℬ |,

⌈
|ℬ|·p̂s (w )
p̂s (wq̄ )

⌉}
s ← f (w )
If s + γ < |ℬ | then

r ← [s, s + γ − 1]

Else

r ← [0, s + γ − 1 mod |ℬ |]
r ← r ∪ [s, |ℬ | − 1]

Return r

α̃
FSB
(b) :

/* returns {w ∈ ˜𝒮
��b ∈ β (w )} */

A←𝒲q̄

Forw ∈ ˜𝒮 \𝒲q̄ do

If b ∈ βFSB(w ) then
A← A ∪ {w }

return A

Figure 6: Bucketizing function βFSB for assigning passwords to buckets

in FSB. Here p̂s is the distribution of passwords; 𝒲q̄ is the set of top-q̄
passwords according to p̂s ; ℬ is the set of buckets; f is a universal hash

function f : W 7→ Z|B | ; ˜𝒮 is the set of passwords hosted by the server.

cannot be used to build a username-password C3 service.

Implementing FSB requires knowledge of the distribution of

human-chosen passwords. Of course, obtaining precise knowledge

of the password distribution can be difficult; therefore, we will

use an estimated password distribution, denoted by p̂s . Another
parameter of FSB is q̄, which is an estimate of the attacker’s query

budget. We show that if the actual query budget q ≤ q̄, FSB has

zero security loss. Larger q̄ will provide better security; however,

it also means more replication of the passwords and larger bucket

sizes. So, q̄ can be tuned to balance between security and bandwidth.
Below we will give the two main algorithms of FSB scheme: βFSB
and α̃

FSB
, followed by bandwidth and security analysis for FSB.

Bucketizing function (βFSB). To map passwords to buckets, we

use a universal hash function f : 𝒲 7→ Z |B | . The algorithm for

bucketization βFSB(w) is given in Figure 6. The parameter q̄ is used

in the following way: β replicates the most probable q̄ passwords,

𝒲q̄ , across all |ℬ | buckets. Each of the remaining passwords are

replicated proportional to their probability. A passwordw with prob-

ability p̂s (w) is replicated exactly γ =
⌈
|ℬ | ·p̂s (w )
p̂s (wq̄ )

⌉
times, wherewq̄

is the q̄th most likely password. Exactly which buckets a password

is assigned to are determined using the universal hash function f .
Each bucket is assigned an identifier between [0, |ℬ | − 1]. A pass-

wordw is assigned to the buckets whose identifiers fall in the range

[f (w), f (w) + γ − 1]. The range can wrap around. For example, if

f (w)+γ > |ℬ |, then the password is assigned to the buckets in the

range [0, f (w) + γ − 1 mod |ℬ |] and [f (w), |ℬ | − 1].

Bucket retrieving function (α̃ ). Retrieving passwords assigned

to a bucket is challenging in FSB. An inefficient — linear in N —

implementation of α̃ is given in Figure 6. Storing the contents of

each bucket separately is not feasible, since the number of buckets

in FSB can be very large, |ℬ | ≈ N . To solve the problem, we utilize

the structure of the bucketizing procedure where passwords are

assigned to buckets in continuous intervals. This allows us to use

an interval tree [7] data structure to store the intervals for all of the

passwords. Interval trees allow fast queries to retrieve the set of

intervals that contain a queried point (or interval) — exactly what

is needed to instantiate α̃ .
This efficiency comes with increased storage cost. To store N en-

tries in a interval tree, we require𝒪 (N logN ) storage. The tree can
be built in𝒪 (N logN ) time, and each query takes𝒪 (logN + |α̃ (b)| )

and username-password pairs are close to uniform.

time. The big-O notation only hides small constants.

Estimating password distributions. To construct the bucketiza-
tion algorithm for FSB, the server needs an estimate of the password

distribution (pw ). This estimate will be used by both the server and

the client to assign passwords to buckets. One possible estimate is

the histogram of the passwords in the leaked data
˜𝒮 . Histogram

estimates are typically accurate for popular passwords, but such

estimates are not complete — passwords that are not in the leaked

dataset will have zero probability according to this estimate. More-

over, sending the histogram over to the client is expensive in terms

of bandwidth and security critical. We also considered password

strength meters, such as zxcvbn [47] as a proxy for a probability

estimate. However, this estimate turned out to be too coarse for our

purposes. For example, more than 10
5
passwords had a “probability”

of greater than 10
−3
.

We build a 3-gram password model p̂n using the leaked pass-

words present in
˜𝒮 . Markov models or n-gram models are shown

to be effective at estimating human-chosen password distribu-

tions [34], and they are very fast to train and run (unlike neu-

ral network based password distribution estimators, such as [37]).

However, we found the n-gram model assigns very low probabili-

ties to popular passwords. The sum of the probabilities of the top

1,000 passwords as estimated by the 3-gram model is only 0.0012,

whereas in practice the top 1000 passwords are chosen by 5.6% of

users.

We therefore use a combined approach that uses a histogram

model for the popular passwords and the 3-gram model for the

rest of the distribution. Such combined techniques are also used

in practice for password strength estimation [37, 47]. Let p̂s be

the estimated password distribution used by FSB. Let p̂h be the

distribution of passwords implied by the histogram of passwords

present in
˜𝒮 . Let ˜𝒮t be the set of the t most probable passwords

according to p̂h . We used t = 10
6
.

p̂s (w) =


p̂h (w) ifw ∈ ˜𝒮t ,

p̂n (w) ·
1−

∑
w̃∈ ˜𝒮t p̂h (w )

1−
∑
w̃∈ ˜𝒮t p̂n (w )

otherwise.

Bandwidth. We use the formulation provided in Section 3 to

compute the bandwidth requirement for FSB. In this case, m =

|ℬ | · q̄ + |ℬ |
p̂s (wq̄ )

+ N , and n = |ℬ |. Therefore, the maximum size of

a bucket is with high probability less than 2 ·

(
q̄ + 1

p̂s (wq̄ )
+ N
|ℬ |

)
.

The details of this analysis are given in Appendix B.

In practice, we can choose the number of buckets to be such

that |ℬ | = N . Then, the number of passwords in a bucket depends

primarily on the parameter q̄. Note, bucket size increases with q̄.

Security analysis. We show that there is no security loss in the

uncompromised setting for FSB when the actual number of guesses

q is less than the parameter q̄, and we give an upper bound for the

security loss when q exceeds q̄.

Theorem 5.1. If a frequency based bucketization scheme ensures

∀w ∈ 𝒲, |βFSB(w)| = min

{
|ℬ |,

⌈
|ℬ | ·p̂s (w )
p̂s (wq̄ )

⌉}
, then for the uncom-

promised users,

(1) Advb-gsβFSB
(q) = Advgs(q) for q ≤ q̄, and
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(2) for q > q̄ ,
λq − λq̄

2

≤ ∆q ≤ (q − q̄) · p̂s (wq̄ ) − (λq − λq̄ )

The full proof is included in Appendix D. Intuitively, since the

top q passwords are repeated across all buckets, having a bucket

identifier does not allow an attacker to easily guess these q pass-

words. Moreover, the conditional probability of these q passwords

given the bucket is greater than that of any other password in the

bucket. Therefore, the attacker’s best choice is to guess the top q
passwords, meaning that it does not get any additional advantage

when q̄ ≤ q, leading to part (1) of the theorem.

The proof of part (2) follows from the upper and lower bounds

on the number of buckets each password beyond the top q is placed

within. The bounds we prove show that the additional advantage

in guessing the password in q queries is less than the number of

additional queries times the probability of the q̄th password and

at least half the difference in the guessing probabilities λq and λq̄
(defined in Equation (2)).

Note that this analysis of security loss is based on the assumption

that the FSB scheme has access to the precise password distribution,

p̂s = pw . We empirically analyze the security loss in Section 6 for

p̂s , pw , in both the compromised and uncompromised settings.

6 EMPIRICAL SECURITY EVALUATION
In this sectionwe empirically evaluate and compare the security loss

for different password-only C3 schemes we have discussed so far —

hash-prefix-based bucketization (HPB) and frequency-smoothing

bucketization (FSB).

We focus on known-username attacks (KUA), since in many

deployment settings a curious (or compromised) C3 server can

figure out the username of the querying user. We separate our

analysis into two settings: previously compromised users, where the

attacker has access to one or more existing passwords of the target

user, and previously uncompromised users, where no password

corresponding to the user is known to the attacker (or present in

the breached data).

Recall, according to our threat model, we assume the adversary

has knowledge of all the leak dataset C3 is using. This situation is

realistic, since many password breaches are readily available for

download online. For each setting the attacker also knows the buck-

etizing algorithm. The attacker obtains (possibly by compromising

the C3 service) the bucket identifier that the client queried, as well

as the user’s username or email. Our analysis will also show what

an honest-but-curious C3 server would learn about the passwords

of a user who participated in the protocol.

First wewill look into the unrestricted settingwhere no password

policy is enforced, and the attacker and the C3 server have the

same amount of information about the password distribution. In

the second experiment, we analyze the effect on security of giving

the attacker more information compared to the C3 server (defender)

by having a password policy that the attacker is aware of but the

C3 server is not.

Password breachdataset. Weused the breach dataset used in [40].

The dataset was derived from a previous breach compilation [21]

˜𝒮 T T ∩ ˜𝒮 Tsp Tsp ∩ ˜𝒮

# users 383.2 7.5 5.6 (76%) 4.8 3.7 (77%)

# passwords 255.2 5.4 3.6 (67%) 4.0 2.4 (60%)

# user-pw pairs 748.9 7.5 2.8 (37%) 4.9 1.8 (37%)

Figure 7: Number of entries (in millions) in the breach dataset
˜𝒮 , test

dataset T , and the site-policy test subset Tsp. Also reported are the intersec-

tions (of users, passwords, and user-password pairs, separately) between

the test dataset entries and the whole breach dataset that the attacker has

access to. The percentage values refer to the fraction of the values in each

test set that also appear in the intersections.

dataset containing about 1.4 billion username-password pairs. The

data was cleaned by removing non-ASCII characters and passwords

longer than 30 characters. The authors of [40] also joined accounts

with similar usernames and passwords using a method they called

the mixed method. The usernames with only one email and pass-

word were removed, which in total removed 650 million username-

password pairs. We obtained this joined and filtered dataset from

the authors and performed our empirical analysis on that dataset.

Removal of the 650 million pairs for users with only one password

can only affect the experiment on the security for uncompromised

users. Given the large size of the dataset, we expect our results

on attack success are not impacted in any significant way by the

removal of those accounts.

The final dataset consists of about 756million username-password

pairs.
5
We remove 1% of username-password pairs to use as test

data, denoted as T . The remaining 99% of the data is used to simu-

late the database of leaked credentials
˜𝒮 . For the experiments with

an enforced password policy, we took the username-password pairs

inT that met the requirements of the password policy to createTsp.
We use Tsp to simulate queries from a website which only allows

passwords that are at least 8 characters long and are not present in

Twitter’s list of banned passwords [11]. For all attack simulations,

the target user-password pairs are sampled from the test dataset T
(or Tsp).

In Figure 7, we report some statistics about T , Tsp, and ˜𝒮 . No-
tably, 5.6 million (76%) of the users in T are also present in

˜𝒮 . This
is likely because users in the joined breach compilation dataset

have at least two passwords. If the 650 million singleton users had

not been removed, we expect that this number would be smaller.

Among the username-password pairs, 2.8 million (37%) pairs in

T are also present in
˜𝒮 . This means an attacker will be able to

compromise 37% of the accounts (which is 50% of the previously

compromised accounts) trivially with credential stuffing. In the

site-policy enforced test data Tsp, a similar proportion of the users

(77%) and username-password pairs (37%) are also present in
˜𝒮 .

Experiment setup. We want to understand the impact of reveal-

ing a bucket identifier on the security of uncompromised and com-

promised users separately. As we can see from Figure 7, a large

proportion of users in T are also present in
˜𝒮 . We therefore split T

into two parts: one with only username-password pairs from com-

promised users, Tcomp (users with at least one password present

in
˜𝒮), and another with only pairs from uncompromised users

5
Note, there are duplicate username-password pairs in this dataset.

8



Tuncomp. We take two sets of random samples of 5000 username-

password pairs
6
, one from Tcomp, and another from Tuncomp. For

each pair (u,w), we run the gamesGuess and BucketGuess as spec-
ified in Figure 4. We record the results for guessing budgets of

q ∈ {1, 10, 10
2, 10

3}. We repeat each of the experiments 5 times

and report the averages in Figure 8.

For HPB, we compared implementations using hash prefixes of

lengths l ∈ {12, 16, 20}. We use the SHA256 hash function with a

salt, though the choice of hash function does not have a noticeable

impact on the results.

For FSB, we used interval tree data structures to store the leaked

passwords in
˜𝒮 for fast retrieval of α̃ (b). We used |ℬ | = 2

30
buckets

and the hash function f is set to f (x) = H(30)(x), the 30-bit prefix
of the (salted) SHA256 hash of the password.

Attack strategy. The attacker’s goal is to maximize its success in

winning the games Guess and BucketGuess. In Equation (1) and

Equation (2) we outline the advantage of attackers against Guess
and BucketGuess, and thereby specify the best strategies for at-

tacks. Guess denotes the baseline attack success rate in a scenario

where the attacker does not have access to bucket identifiers corre-

sponding to users’ passwords. Therefore the best strategy for the

attacker 𝒜 is to output the q most probable passwords according

to its best knowledge of the password distribution.

The optimal attack strategy for 𝒜′ in BucketGuess will be to
find a list of passwords according to the following equation,

argmax

w1, ...,wq
b ∈β ((u,wi ))

q∑
i=1

Pr [W = wi | U = u]

|β((u,wi ))|
,

where the bucket identifier b and user identifier u are provided to

the attacker. This is equivalent to taking the top-q passwords in the

set α(b) ordered by Pr [W = w | U = u] /|β((u,w))|.
We compute the list of guesses outputted by the attacker for a

user u and bucket b in the following way. For the compromised

users, i.e., if (u, ·) ∈ ˜𝒮 , the attacker first considers the list of 10
4

targeted guesses generated based on the credential tweaking attack

introduced in [40]. If any of these passwords belong to α(b) they
are guessed first. This step is skipped for uncompromised users.

For the remaining guesses, we first construct a list of candidates

L. L consists of the 10
6
most frequent passwords in

˜𝒮 and 500× 10
6

passwords generated from the 3-gram password distribution model

p̂n . Each password w in L is assigned a weight p̂s (w)/|β((u,w))|
(See Section 5 for details on p̂s and p̂n ). The list L is pruned to

only contain unique guesses. Note L is constructed independent

of the username or bucket identifier, and it is reordered based

on the weight values. Therefore, it is constructed once for each

bucketization strategy. Finally, based on the bucket identifier b,
the remaining guesses are chosen from {α(b) ∩ (u,w) | w ∈ L} in
descending order of weight.

For the HPB implementation, each password is mapped to one

bucket, so |β(w)| = 1 for all w . For FSB, |β(·)| can be calculated

using the equation in Theorem 5.1.

Results. We report the success rates of the attack simulations

6
There was a low standard deviation between results for different random samples of

5000 pairs.

in Figure 8. The baseline success rate (first row) is the advantage

Advgs, computed using the same attack strategy stated above except

with no information about the bucket identifier. The following

rows record the success rate of the attack for HPB and FSB with

different parameter choices. The estimated security loss (∆q ) can
be calculated by subtracting the baseline success rate from the HPB

and FSB attack success rates.

The security loss from using HPB is devastating, especially for

previously uncompromised users. Accessibility to the l = 20-bit

hash prefix, used by HIBP [5], allows an attacker to compromise

34% of previously uncompromised users in just one guess. In fewer

than 10
3
guesses, that attacker can compromise more than 70%

of the accounts (12x more than the baseline success rate with

10
3
guesses). Google Password Checker (GPC) uses l = 16 for

its username-password C3 service. Against GPC, an attacker only

needs 10 guesses per account to compromise 34% of accounts. Re-

ducing the prefix length l can decrease the attacker’s advantage.

However, that would also increase the bucket size. As we see for

l = 12, the average bucket size is 62,309, so the bandwidth required

to perform the credential check would be high.

FSB resists guessing attacks much better than HPB does. For q ≤
q̄ the attacker gets no additional advantage, even with the estimated

password distribution p̂s . The security loss for FSB when q > q̄ is

much smaller than that of HPB, even with smaller bucket sizes. For

example, the additional advantage over the baseline against FSB

with q = 100 and q̄ = 10 is only 3%, despite FSB also having smaller

bucket sizes than HPB with l = 16. Similarly for q̄ = 100, ∆
10

3 =

3.6%. This is because the conditional distribution of passwords

given an FSB bucket identifier is nearly uniform, making it harder

for an attacker to guess the correct password in the bucket α(b) in
q guesses.

For previously compromised users — users present in
˜𝒮 — even

the baseline success rate is very high: 37% of account passwords

can be guessed in 1 guess and 53% can be guessed in fewer than

1,000 guesses. The advantage is supplemented even further with

access to the hash prefix. As per the guessing strategy, the attacker

first guesses the leaked passwords that are both associated to the

user and in α(b). This turns out to be very effective. Due to the

high baseline success rate the relative increase is low; nevertheless,

in total, an attacker can guess the passwords of 80% of previously

compromised users in fewer than 1,000 guesses. For FSB, the secu-

rity loss for compromised users is comparable to the loss against

uncompromised users for q ≤ q̄. Particularly for q̄ = 10 and q = 100,

the attacker’s additional success is only 1.9%. Similarly, for q̄ = 100

an attacker gets at most 2.1% additional advantage for a guessing

budget of q=1,000. Interestingly, FSB performs significantly worse

for compromised users compared to uncompromised users forq = 1.

This is because the FSB bucketing strategy does not take into ac-

count targeted password distributions, and the first guess in the

compromised setting is based on the credential tweaking attack.

In our simulation, previously compromised usersmade up around

76% of the test set; it is unclear what is the actual proportion would

be in the real world, so we do not combine results from the uncom-

promised and compromised settings.

As we can see, since the bucket sizes for FSB with q̄ = 100

and HPB with l = 16 are comparable, we will use q̄ = 100 as the
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Protocol Params

Bucket size Uncompromised Compromised

Avg max q = 1 q = 10 q = 10
2 q = 10

3 q = 1 q = 10 q = 10
2 q = 10

3

Baseline N/A N/A N/A 0.6 1.3 2.5 5.9 37.4 50.4 51.4 52.6

HPB

l = 20
‡

244 303 33.7 49.7 63.0 71.0 64.9 71.8 76.6 79.9

l = 16
†

3,896 4,138 18.3 34.3 47.6 60.5 58.2 65.0 71.1 75.7

l = 12 62,309 63,173 8.4 18.0 31.6 45.1 53.5 58.2 63.9 70.0

FSB

q̄ = 1 76 112 0.6 5.7 69.9 71.0 51.3 53.3 79.4 79.9

q̄ = 10 908 1,010 0.6 1.3 5.5 70.0 51.1 51.6 53.3 79.5

q̄ = 10
2

5,635 5,876 0.6 1.3 2.5 9.4 50.7 51.5 52.1 54.7

q̄ = 10
3

21,107 21,550 0.6 1.3 2.5 5.8 50.4 51.5 52.1 53.3

‡
HIBP uses l = 20 for its password-only C3 service.

†
GPC uses l = 16 for username-password C3 service.

Figure 8: Comparison of attack success rate given q queries on different password-only C3 settings. All success rates are in percent (%) of the total number

of samples (5,000). Bucket size, the number of passwords associated to a bucket, is measured on a random sample of 10,000 buckets.

parameter for FSB for further security and performance analysis.

Note, GPC has a username-password C3 service and therefore, its

bucket sizes will be larger. (See Figure 10.)

Password policy experiment. In the previous set of experiments,

we assumed that the C3 server and the attacker use the same es-

timate of the password distribution. To simulate the effect when

the attacker has a better estimate of the password distribution than

the C3 server, we simulated a website which enforces a password

policy. We assume that the policy is known to the attacker but not

to the C3 server.

For our sample password policy, we required that passwords

have at least 8 characters and that they must not be on Twitter’s

banned password list [11]. The test samples are drawn from Tsp,
username-password pairs from T where passwords follow this pol-

icy, and the attacker is also given the ability to tailor their guesses

to this policy. The server still stores all passwords in
˜𝒮 , without

regard to this policy. Notably, the FSB scheme relies on a good

estimate of the password distribution to be effective in distributing

passwords evenly across buckets. Its estimate, when compared to

the distribution of passwords in Tsp, should be less accurate than

it was in the regular simulation, when compared to the password

distribution from T .
We chose the parameters k = 16 for HPB and q̄ = 100 for FSB,

because they were the most representative of how the HPB and FSB

bucketization schemes compare to each other. These parameters

also lead to similar bucket sizes, with around 5,000 passwords per

bucket. Overall, we see that the success rate of an attacker decreases

in this simulation compared to the general experiment (without a

password policy). This is likely due to the fact that after removing

popular passwords, the remaining set of passwords that we can

choose from has higher entropy, and each password is harder to

guess. FSB still defends much better against the attack than HPB

does, even though the password distribution estimate used by the

FSB implementation is quite inaccurate, especially at the head of the

distribution. FSB assigns larger probability estimates to passwords

that are banned according to our password policy.

We also see that due to the inaccurate estimate by the C3 server

for FSB, we start to see some security loss for an adversary with

guessing budget q = 100. In the general simulation, the password

estimate p̂s used by the server was closer to p, so we didn’t have

any noticeable security loss where q ≤ q̄.

Protocol

Uncompromised Compromised

q = 1 10 10
2

10
3 q = 1 10 10

2
10

3

Baseline 0.1 0.4 1.2 3.1 37.9 46.7 47.0 47.8

HPB (l = 16) 9.6 17.8 27.0 41.2 51.0 55.7 59.5 63.8

FSB (q̄ = 10
2
) 0.1 0.4 1.4 9.6 46.8 47.1 47.3 51.2

Figure 9: Attack success rate (in %) comparison for HPB with l = 16

(effectively GPC) and FSB with q̄ = 10
2
for password policy simulation.

The first row records the baseline success rate Advgs(q). There were 5,000
samples each from the uncompromised and compromised settings.

7 PERFORMANCE EVALUATION
In this section, we implement different approaches to checking com-

promised credentials and evaluate their computational overheads.

For fair comparison, in addition to the algorithms we propose, FSB

and IDB, we also implement HIBP and GPCwith our breach dataset.

Setup. We build C3 services as serverless web applications that pro-

vide REST APIs. We used AWS Lambda [1] for the server-side com-

putation and Amazon DynamoDB [3] to store the data. The benefit

of using AWS Lambda is it can be easily deployed as Lambda@Edge

and integrated with Amazon’s content delivery network (CDN),

called CloudFront [2]. (HIBP uses Cloudflare as CDN to serve more

than 600,000 requests per day [6].) We used Javascript to implement

the server and the client side functionalities. The server is imple-

mented as a Node-JS app. We provisioned the Lambda workers to

have maximum 3GB of memory. For cryptographic operations, we

used a Node-JS library called Crypto [12].

For pre-processing and pre-computation of the data we used a

desktop with an Intel Core i9 processor and 128 GB RAM. Though

some of the computation (e.g., hash computations) can be expedited

using GPUs, we did not use any for our experiment. We used the

same machine to act as the client. The round trip network latency

of the Lambda API from the client machine takes about 130 millisec-

onds. Recall that the breach dataset we use contains 255 million

unique passwords and 749 million unique username-password pairs.

(See Figure 7.)

To measure the performance of each scheme, we pick 20 random

passwords from the test setT and run the full C3 protocol with each

one. We report the average time taken for each run in Figure 10.

In the figure, we also give the break down of the time taken by

the server and the client for different operations. The network

latency had very high standard deviation (25%), though all other

10



measurements had low (< 1%) standard deviation compared to the

mean.

HIBP. The implementation of HIBP is the simplest among the four

schemes. The set of passwords in
˜𝒮 is hashed using SHA256 and

split into 2
20

buckets based on the first 20 bits of the hash value (we

picked SHA256 because we also used the same for FSB). Because the

bucket sizes in HIBP are so small (< 500), each bucket is stored as a

single value in a DynamoDB cell, where the key is the hash prefix.

For larger leaked datasets, each bucket can be split into multiple

cells. The client sends the 20 bit prefix of the SHA256 hash of their

password, and the server responds with the corresponding bucket.

Among all the protocols HIBP is the fastest (but also weakest in

terms of security). It takes only 208 ms on average to complete a

query over WAN. Most of the time is spent in round-trip network

latency and the query to DynamoDB. The only cryptographic op-

eration on the client side is a SHA256 hash of the password, which

takes less than 1 ms.

FSB. The implementation of FSB is more complicated than that

of HIBP. Because we have more than 1 billion buckets for FSB and

each password is replicated in potentially many buckets, storing all

the buckets explicitly would require too much storage overhead. We

use interval trees [7] to quickly recover the passwords in a bucket

without explicitly storing each bucket. Each password w in the

breach database is represented as an interval specified by βFSB(w).
We stored each node of the tree as a separate cell in DynamoDB. We

retrieved the intervals (passwords) intersecting a particular value

(bucket identifier) by querying the nodes stored in DynamoDB.

FSB also needs an estimate of the password distribution to get the

interval range for a tree. We use p̂s as described in Section 4. The

description of p̂s takes 8.9 MB of space that needs to be included

as part of the client side code. This is only a one-time cost during

client installation.

The depth of the interval tree is logN , where N is the number of

intervals (passwords) in the tree. Since each node in the tree is stored

as a separate key-value pair in the database, one client query re-

quires logN queries to DynamoDB. To reduce this cost, we split the

interval tree into r trees over different ranges of intervals, such that

the i-th tree is over the interval [(i − 1) · ⌊|ℬ |/r⌋ , i · ⌊|ℬ |/r⌋ − 1].

The passwords whose bucket intervals span across multiple ranges

are present in all corresponding trees. We used r = 64, as it ensures

each tree has around 4 million passwords, and the total storage

overhead is less than 1% more than if we stored one large tree.

Each interval tree of 4 million passwords was generated in paral-

lel and took 3 hours in our server. Each interval tree takes 400 MB

of storage in DynamoDB, and in total 25 GB of space. FSB is the

slowest among all the protocols, mainly due to multiple DynamoDB

calls, which cumulatively take 273 ms (half of the total time, in-

cluding network latency). This can be sped up by using a better

implementation of interval trees on top of DynamoDB, such as

storing a whole subtree in a DynamoDB cell instead of storing each

tree node separately. We can also split the range of the range tree

into more granular intervals to reduce each tree size. Nevertheless,

as the round trip time for FSB is small (527 ms), we leave such

optimization for future work. The maximum amount of memory

used by the server is less than 81 MB during an API call.

On the client side, the computational overhead is minimal. The

Protocol

Client Server Total Bucket

Crypto Server call Comp DB call Crypto time size

HIBP 1 205 2 40 – 208 244

FSB 1 524 2 273 – 527 3,086

GPC 47 402 9 71 6 458 9,164

IDB 72 405 10 73 6 487 9,166

Figure 10: Time taken in milliseconds to make a C3 API call. The client

and server columns contain the time taken to perform client side and server

side operations respectively.

client performs one SHA256 hash computation. The network band-

width consumed for sending the bucket of hash values from the

server takes on average 261 KB.

IDB and GPC. Implementations of IDB and GPC are very similar.

We used the same platform — AWS Lambda and DynamoDB — to

implement these two schemes. All the hash computations used

here are Argon2id with default parameters, since GPC in [9] uses

Argon2. During precomputation, the server computes the Argon2

hash of each username-password pair and raises it to the power

of the server’s key κ. These values can be further (fast) hashed

to reduce their representation size, which saves disk space and

bandwidth. However, hashing would make it difficult to rotate

server key. We therefore store the exponentiated Argon2 hash

values in the database, and hash them further during the online

phase of the protocol. The hash values are indexed and bucketized

based on either H(l )(u∥w) (for GPC) or H(l )(u) (for IDB). We used

l = 16 for both GPC and IDB, as proposed in [9].

The server (for both IDB and GPC) only performs one elliptic

curve exponentiation, which on average takes 6 ms. The remain-

ing time incurred is from network latency and calling Amazon

DynamoDB.

On the client side, one Argon2 hash has to be computed for GPC

and two for IDB. Computing the Argon2 hash of the username-

password pairs takes on an average 20 ms on the desktop machine.

We also tried the same Argon2 hash computation on a personal

laptop (Macbook Pro), and it took 8 ms. In total, hashing and ex-

ponentiation takes 47 ms for GPC, and 72 ms (an additional 25 ms)

for IDB. The cost of checking the bucket is also higher (compared

to HIBP and FSB) due to larger bucket sizes.

IDB takes only 31 ms more time on average than GPC (due

to one extra Argon2 hashing), while also leaking no additional

information about the user’s password. It is the most secure among

all the protocols we discussed (should username-password pairs be

available in the leak dataset), and runs in a reasonable time.

8 DEPLOYMENT DISCUSSION
Here we discuss different ways C3 services can be used and as-

sociated threats that need to be considered. A C3 service can be

queried while creating a password — during registration or pass-

word change — to ensure the new password is not present in a leak.

In this setting C3 is queried from a web server, and the client IP is

potentially not revealed to the server. This, we believe, is a safer

setting to use than the one we will discuss below.

In another scenario, a user can directly query a C3 service. A

user can look for leaked passwords themselves by visiting a web

site or using a browser plugin, such as 1Password [4] or Password
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Checkup [9]. This is the most prevalent use case of C3. For example,

the client can regularly check with a C3 service to proactively

safeguard user accounts from potential credential stuffing attacks.

However, there are several security concerns with this setting.

Primarily, the client’s IP is revealed to the C3 server in this setting,

making it easier for the attacker to deanonymize the user. Moreover,

multiple queries from the same user can lead to a more devastating

attack. Below we give two new threat models that need to consid-

ered for secure deployment of C3 services (where bucket identifiers

depend on the password).

Regular password checks. A user or webservice might want

to regularly check their passwords with C3 services. Therefore, a

compromised C3 server may learn multiple queries from the same

user, which can enable potentially powerful attacks. For FSB the

bucket identifier is chosen randomly, so knowing multiple bucket

identifiers for the same password will help an attacker narrow down

the password search space and significantly improve attack success.

We can mitigate this problem for FSB by derandomizing the

client side bucket selection using a client side state (e.g. browser

cookie) so the client always selects the same bucket for the same

password.We let the c be the client side cookie. To check a password

w with the C3 server, the client picks the jth bucket from the range

β(w), where j ← f (w ∥c) mod |β(w)|.
This derandomization ensures queries from the same device

are deterministic (after the cookie is set). However, if the attacker

can link queries of the same user from two different devices, the

mitigation is ineffective. If the cookie is stolen from the client device,

then the security of FSB is effectively reduced to that of HPB with

similar bucket sizes.

Similarly, if an attacker can track the interaction history between

a user and a C3 service, it can obtain better insight about the user’s

passwords. For example, if a user who regularly checks with a C3

service stops checking a particular bucket identifier, that could

mean the associated password may appear in the most up-to-date

leaked dataset, and the attacker can use that information to guess

the user’s password(s).

Checking similar passwords. Another important issue is query-

ing the C3 service with multiple correlated passwords. Some web

services, like 1Password, use HIBP to check multiple passwords for

a user. As shown by prior work, passwords chosen by the same user

are often correlated [24, 40, 46]. An attacker who can see bucket

identifiers of multiple correlated passwords can mount a stronger

attack. Such an attack would require estimating the joint distri-

bution over passwords. We leave analysis of this threat model for

future work.

9 RELATEDWORK

Private set intersection. The protocol task facing C3 services is

private set membership, a special case of private set intersection

(PSI) [29, 36]. The latter allows two parties to find the intersec-

tion between their private sets without revealing any additional

information.

Even state-of-the-art PSI protocols do not scale to the sizes

needed for our application. For example, Kiss et al. [30] proposed

an efficient PSI protocol for unequal set sizes based on oblivious

pseudo-random functions (OPRF). It performs well for sets with

millions of elements, but the bandwidth usage scales proportion-

ally to the size of the set and so performance is prohibitive in our

setting. Other efficient solutions to PSI [22, 31, 41, 42] have similar

prohibitive bandwidth usage.

Private information retrieval (PIR) [23] is another cryptographic

primitive used to retrieve information from a server. Assuming the

server’s dataset is public, the client can use PIR to privately retrieve

the entry corresponding to their password from the server. But

in our setting we also want to protect the privacy of the dataset

leak. Even if we relaxed that security requirement, the most ad-

vanced PIR schemes [17, 39] require exchanging large amounts of

information over the network, so they are not useful for checking

leaked passwords. PIR with two non-colluding servers can provide

better security [26] than the bucketization-based C3 schemes, with

communication complexity sub-polynomial in the size of the leaked

dataset. However, it requires building a C3 service with two servers

guaranteed to not collude, which may be practically difficult.

Compromised credential checking. To the best of our knowl-

edge, HIBP was the first publicly available C3 service. Junade Ali

designed the current HIBP protocol which uses bucketization via

prefix hashing to limit leakage. Google’s Password Checker extends

this idea to use PSI, which minimizes the information about the

leak revealed to clients. They also moved to checking username,

password pairs.

Google’s system was described in a paper by Thomas et al. [44],

which became available to us after we began work on this paper.

They introduced the design and implementation of their Google

Password Checker and report on measurments of its initial deploy-

ment. They recognized that their first generation protocol leaks

some bits of information about passwords, but did not analyze the

potential impact on password guessability. They also propose (what

we call) the ID-based protocol as a way to avoid this leakage. Our

paper provides further motivation for their planned transition to it.

Thomas et al. point out that password-only C3 services are likely

to have high false positive rates. Our new protocol FSB, being in the

password-only setting, inherits this limitation. That said, should

one want to do password-only C3 (e.g., because storing username,

password pairs is considered too high a liability given their utility

for credential stuffing), FSB represents the best known approach.

Other C3 services include, for example, Vericlouds [15] and

GhostProject [13]. They allow users to register with an email ad-

dress, and regularly keep the user aware of any leaked (sensitive)

information associated with that email. Such services send infor-

mation to the email address, and the user implicitly authenticates

(proves ownership of the email) by having access to the email ad-

dress. These services are not anonymous and must be used by the

primary user. Moreover, these services cannot be used for password-

only C3.

Distribution-sensitive cryptography. Our FSB protocol uses an

estimate of the distribution of human chosen passwords, making it

an example of distribution-sensitive cryptography, in which con-

structions use contextual information about distributions in order

to improve security. Previous distribution-sensitive approaches in-

clude Woodage et al. [48], who introduced a new type of secure
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sketch [25] for password typos, and Lacharite et al.’s [32] frequency-

smoothing encryption. While similar in that they use distributional

knowledge, their constructions do not apply in our setting.

10 CONCLUSION
We explore different settings and threat models associated with

checking compromised credentials (C3). The main concern is the

secrecy of the user passwords that is being checked. We show, via

simulations, that the existing industry deployed C3 services (such as

HIBP andGPC) do not provide adequate security. Indeed an attacker

who obtains the query to such a C3 service and the username of the

querying user can severly damage the secrecy of the password. We

give more secure C3 protocols for checking leaked passwords and

username-password pairs. We implemented and deployed different

C3 protocols on AWS Lambda and evaluated their computational

and bandwidth overhead. We finish with several nuanced threat

models and deployment discussions that should be considered when

deploying C3 services.
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Figure 11: Statistics on samples with low edit distance between user-

name and password, as a percentage of a random sample of 10
5
username-

password pairs.

A CORRELATION BETWEEN USERNAME
AND PASSWORDS

In Section 3 the username and password choices of previously un-

compromised users can be modeled independently.

To check whether this assumption would be valid or not, we ran-

domly sampled 10
5
username-password pairs from the dataset used

in Section 6 and calculated the Levenshtein edit distance between

each username and password in a pair. We have recorded the result

of this experiment in Figure 11.

We found that the mean edit distance between a username and

password was 9.4, while the mean password length was 8.4 char-

acters and the mean username length was 10.0 characters. This

supports that while there are some pairs where the password is

almost identical to the username, a large majority are not related

to the username at all.

B BANDWIDTH OF FSB
To calculate the maximum bandwidth used by FSB, we use the balls-

and-bins formula as described in Section 3. Each password w is

stored in |β(w)| buckets, so the total number of balls, or passwords

being stored, can be calculated as

m =
∑
w ∈ ˜𝒮

|β(w)|

=
∑

w ∈𝒲q̄∩ ˜𝒮

|ℬ | +
∑

w ∈ ˜𝒮\𝒲q̄

⌈
|ℬ | · p̂s (w)
p̂s (wq̄ )

⌉
≤ |𝒲q̄ ∩ ˜𝒮 | · |ℬ | +

∑
w ∈ ˜𝒮\𝒲q̄

(
|ℬ | · p̂s (w)
p̂s (wq̄ )

+ 1

)
≤ |ℬ | · q̄ + |ℬ | · 1

p̂s (wq̄ )
+ N

The first equality is obtained by replacing the definition of β(w); the
second inequality holds because ⌈x⌉ ≤ x + 1; the third inequality

holds because S ⊆W .

The number of bins n = |ℬ |, andm > n logn, if q̄ > logn. There-
fore, the maximum bucket size for FSB would with high probability

be no more than 2 ·

(
q̄ + 1

p̂s (wq̄ )
+ N
|ℬ |

)
.

C PROOF OF THEOREM 4.2
Because the IDB bucketization scheme does not depend on the

password, Pr [B = b | W = w ∧U = u] = Pr [B = b | ∧U = u]

Advb-gs
IDB
(q)

=
∑
u

∑
b

max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u] · Pr [B = b | U = u]

=
∑
u

(∑
b

Pr [B = b | U = u]

)
max

w1, ...,wq

q∑
i=1

Pr [W = wi ∧U = u]

= Advgs(q)

The first step follows from independence of password and bucket

choice, and the third step is true because there is only one bucket

for each username.

D PROOF OF THEOREM 5.1
First we calculate the general form of the BucketGuessβFSB advan-

tage. Then, we show that for q ≤ q̄, Advb-gsβFSB
(q) = Advgs(q), and we

bound the difference in the advantages for the games when q > q̄.

Advb-gsβFSB
(q) =

∑
u

∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

Pr [W = wi ∧U = u]

|βFSB(wi )|

=
∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi )

|βFSB(wi )|

The second step follows from the independence of usernames and

passwords in the uncompromised setting.

We will use 𝒲q̄ to refer to the top q̄ passwords according to

password distribution p̂s = pw , and wq̄ to refer to the q̄th most

popular password according to p̂s .
For w ∈ 𝒲q̄ , we can calculate the fraction in the summation

exactly as
p̂s (w )
|βFSB(w ) |

=
p̂s (w )
|ℬ | .

For any otherw ∈𝒲 \𝒲q̄ , we can bound the fraction using the

bound on the number of buckets a password is placed in.

|ℬ | · p̂s (w)
p̂s (wq̄ )

≤ |βFSB(w)| <
|ℬ | · p̂s (w)
p̂s (wq̄ )

+ 1.

We can use the lower bound on |βFSB(w)| to find that

p̂s (w)

|βFSB(w)|
≤

p̂s (wq̄ )

|ℬ |
.

Using the upper bound on |βFSB(w)|,

p̂s (w)

|βFSB(w)|
>

p̂s (w)
|ℬ | ·p̂s (w )
p̂s (wq̄ )

+ 1

=
p̂s (w) · p̂s (wq̄ )

|ℬ | · p̂s (w) + p̂s (wq̄ )
=

p̂s (wq̄ )

|ℬ | + p̂s (wq̄ )

p̂s (w )

Since the values of
p̂s (w )
|βFSB(w ) |

are always larger for w ∈ 𝒲q̄ , the

values ofw1, . . . ,wq chosen for each bucket will be the top q̄ pass-

words overall, along with the top q − q̄ of the remaining passwords

in the bucket, ordered by
p̂s (·)
|βFSB(·) |

.
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To find an upper bound on Advb-gsβFSB
(q),∑

b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi )

|βFSB(wi )|

≤
∑
b

©«
∑

w ∈𝒲q̄

p̂s (w)

|ℬ |
+ (q − q̄)

p̂s (wq̄ )

|ℬ |
ª®¬

= λq̄ + (q − q̄) · pq̄

For q ≤ q̄, we have Advb-gsβFSB
(q) ≤ λq̄ .

To find a lower bound onAdvb-gsβFSB
(q), letw∗q̄+1

, . . . ,w∗q be theq−q̄

passwords in α(b) \𝒲q̄ with the highest probability of occurring,

according to p̂s (·).∑
b

max
w1, ...,wq
∈α (b)

q∑
i=1

p̂s (wi )

|βFSB(wi )|

>
∑
b

©«
∑

w ∈𝒲q̄

p̂s (w)

|ℬ |
+

q∑
i=q̄+1

p̂s (wq̄ )

|ℬ | + p̂s (wq̄ )

p̂s (w∗i )

ª®®¬
≥ λq̄ +

q∑
i=q̄+1

⌈
|ℬ | · p̂s (w∗i )
p̂s (wq̄ )

⌉
·

p̂s (wq̄ )

|ℬ | + p̂s (wq̄ )

p̂s (w∗i )

≥ λq̄ +

q∑
i=q̄+1

|ℬ | · p̂s (w∗i )

|ℬ | + p̂s (wq̄ )

p̂s (w∗i )

≥ λq̄ +

q∑
i=q̄+1

p̂s (w
∗
i )

1 +
p̂s (wq̄ )

p̂s (w∗i )· |ℬ |

≥ λq̄ +

q∑
i=q̄+1

p̂s (w
∗
i )/2 ≥ λq̄ + (λq − λq̄ )/2 =

λq + λq̄

2

Therefore, ∆q ≥
λq−λq̄

2
.

Note, for every password to be assigned to a bucket, |ℬ | ≥
p̂s (wq̄ )/p̂s (w), or for allw ∈𝒲 ,

p̂s (wq̄ )

p̂s (w )· |ℬ |
≤ 1.
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