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Abstract
Cloud computing platforms such as Amazon Web Ser-
vices, Google Compute Engine, and Rackspace Pub-
lic Cloud have been the subject of numerous measure-
ment studies considering performance, reliability, and
cost efficiency. However, little attention has been paid to
billing. Cloud providers rely upon complex, large-scale
billing systems that track customer resource usage at fine
granularity and generate bills reflecting measured usage.
However, it is not known how visible such usage is to
customers, and how closely provider charges correspond
to customers’ view of their resource usage.

We initiate a study of cloud billing systems, focus-
ing on Amazon EC2, Google Compute Engine, and
Rackspace, and uncover a variety of issues, including:
inherent difficulties in predicting charges; bugs that lead
to free CPU time on EC2 and over-charging for storage
in Rackspace; and long and unpredictable billing-update
latency. Our measurements motivate further study on
billing systems, and so we conclude with a brief discus-
sion of open questions for future work.

1 Introduction
Public cloud computing systems are revolutionizing how
computing power is purchased. Rather than capital ex-
penditures on equipment up-front, cloud customers can
dynamically request resources such as storage, band-
width, and computing power, and pay only for their us-
age. Powering all this is a spectrum of technologies for
resource management and delivery to tenants. Measuring
and improving the reliability and performance of cloud
networks [4, 15, 21], storage [6, 8–10, 20], and compute
resources [14, 17, 22, 23] has seen significant attention
from the academic community.

While some studies have looked at the cost impli-
cations of varying workloads on pay-as-you-go cloud
platforms [11, 12, 19], the efficacy and performance of
the billing systems that enable fine-grained, dynamic re-
source purchasing have, by comparison, has received a
paucity of research attention. A notable exception is the

work on verifiable resource accounting [5,18] which sug-
gests the use of trustworthy computing mechanisms to
prove resource usage at a very fine granularity, e.g., CPU
cycles used. The motivation stems from the perception
that cloud providers may maliciously overcharge their
customers (c.f., [13]). Resource-as-a-service clouds pro-
vide resources at fine granularities [1], but like these
other works are forward-looking and do not address
billing concerns in existing clouds. As it stands, the
research community has not investigated the problems
faced in billing in practice: whether benign (let alone
malicious) errors arise, what kind of performance billing
systems offer, and whether the trajectory of billing-
system design and implementation is set to meet the
needs of potential future applications.

We provide the first step in enacting a research
agenda towards answering these questions. In partic-
ular, we perform the first measurement study of cloud
billing systems, focusing in particular on three pub-
lic infrastructure-as-a-service (IaaS) clouds: Amazon’s
Elastic Compute Cloud (EC2) [3], Google’s Compute
Engine (GCE) [7], and Rackspace’s Public Cloud [16].
For each cloud, we measure its billing latency, as well as
the transparency and predictability of its billing for com-
pute time, network usage, and storage.

While we a priori expected this to be straightforward,
in practice it is surprisingly difficult due to the coarse
granularity of bills, the lack of API support for program-
matic access to bills, and the fact that providers base
bills on resource-usage events that are opaque to cus-
tomers. Despite these challenges, we are able to (a)
reverse-engineer ambiguous aspects of billing; (b) char-
acterize performance, namely in measuring and docu-
menting substantial billing latency between when a re-
source is consumed and charges are visible to the cus-
tomer; (c) uncover bugs, such as a possible race con-
dition in EC2 CPU billing that provides two minutes of
free compute time, inconsistencies across EC2 billing re-
ports, and a bug in Rackspace storage billing that leads



to overcharges; and (d) detect systematic undercharging,
largely due to opaque caching/batching mechanisms.

Our measurements imply the existence of significant
challenges in this space, and highlight the need for more
research on the question of how to build scalable, effec-
tive billing systems. We therefore conclude with a set of
open questions to be answered in order to make progress
towards this goal.

2 Billing Update Latency
We start by assessing the performance of the three
clouds’ billing systems. In later sections we look at how
individual resources are billed. We refer to the delay be-
tween the use of a resource and the bill for the corre-
sponding charge as billing latency. Ideally, the bill would
be updated with low and predictable latency. In reality,
we find that bills are often delayed by hours to days af-
ter a workload runs, and that latency to receive a bill can
vary widely. For brevity we omit our experimental de-
tails for Rackspace and GCE.

EC2 console and CSV billing latency. We measure the
latency of billing information both through the EC2 web-
based console and through the billing reports it publishes
as comma-separated-value (CSV) files. In total, we ran
122 m1.small instances and 150 t1.micro instances on 19
EC2 accounts, using Ubuntu 12.04 LTS unless otherwise
noted. Each account ran a single instance at a time for
3590–3600 seconds and was then idle until all billing up-
dates had been observed. EC2’s web-based management
console updated the most quickly, at an average of 6:23
hours after instance start (std. dev. 4:13 hours), while the
downloadable CSVs were available only 7:36 hours after
instance start (std. dev. 2:59 hours). This delay is both
long, and highly unpredictable.

To better understand the high variability in the timing
of billing-update schedules during prolonged instance
runs, we launched a second experiment in which we ran
25 instances each for 10 hours. We performed two sepa-
rate runs and started instances staggered by 30 seconds in
order to avoid sending too many API calls at once. The
first bills arrived an average of 4.2 hours after launching
the instances, while one or two additional updates each
arrived at 6-hour intervals after the first. These results in-
dicate that the variability could be due to a regular 6-hour
billing cycle, and that instances launched near the end of
the cycle experience lower latency than those launched
near the beginning. While updates across accounts oc-
curred at roughly the same times, one account was billed
for 7 hours in the first update and 3 in the second while
another was billed for 2 hours in the first update, 5 in
the next, and 4 in the third (similar variability occurred
across all instances). This suggests that instance-hour us-
age data is sampled at different times even for instances
started at approximately the same time, making it impos-
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Figure 1: Time series of one-hour runs using 6 accounts.
Shown is instance start and stop time (connected green and
red dots), console billing time (circled black dot), and S3 CSV
billing time (circled red dot).

sible for a customer to predict when all usage is regis-
tered in a given billing update.

Based on these timing results, we investigated a set of
runs shown in Figure 1 where we deliberately staggered
the start time of instances by 30 minutes (shown as green
dots followed by lines). One can see a clear time when
bills seem to be updated, suggesting that the billing sys-
tem periodically updates bills from accounting data as a
batch job. However, there was no indication that bills
are collected on a fixed daily schedule, as we observe no
universally fixed time of day when updates occurred.

Other EC2 billing APIs. The CloudWatch resource-
usage monitoring service has even longer update latency.
We ran 10 c1.medium instances on accounts with no
other activity, and waited for the corresponding bill by
polling the CloudWatch API [2]. CloudWatch took an
average of 11:04 hours (std. dev. 8 minutes) to register
the usage. This is much more predictable than the man-
agement console, but almost double the latency.

The cost-allocation (“tagged”) billing CSV files,
which allow a customer to preemptively tag resources
with a key-value pair and later differentiate their billing
based on these user-defined categories, experienced even
more severe update delays. We ran two batches of tests.
In the first batch we ran 3 instances each for 120, 3610,
and 7210 seconds, expecting to see 1, 2 and 3 instance-
hours billed, respectively. The first billing update took
13 hours, while the second took 33. In the second batch
of tests (instances run for 120, 3620, 7220 seconds),
the first update arrived after 24 hours, and the second
after 56 hours. Two 120-second instances never ap-
peared on the cost-allocation CSV bill, but were billed
for 1 hour on all other billing interfaces, indicating in-
consistency across interfaces. Interestingly, some cost-
allocation CSV billing entries reported instance-hour us-
age as decimals to 8 digits (though the decimals did not
correctly reflect the partial hour used), while others were
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Figure 2: Events in an EC2 VM instance lifetime. Time stamps
are provided only for launch and terminated.

rounded, as usual for instance-hour billing.

Discussion. All three providers have long delays in pro-
viding bills. We found that for GCE, over 13 tests we
observed an average update latency of 2.2 days, mini-
mum of 0.9 days, and maximum of 9.1 days, while for
Rackspace, we observed an average latency of 21.5 hours
with a minimum of 8 hours and maximum of 41.1 hours.
Of the providers, only Rackspace seemed to update their
bills at a consistent time of day: between 9–10am UTC
Amazon provides the most timely usage data (about a
6 hour delay for the web, longer for other interfaces),
but its update time is still not predictable and multiple
update periods are sometimes required before all usage
is reported. Rackspace only updates bills once per day,
while GCE takes even longer and also exhibited extreme
outliers in latency. As a result, it is difficult to use billing
information programmatically, as there is no guarantee
of when it is available or whether a given update reflects
all usage up to that moment.

3 Compute Time Billing
The first question about CPU billing is when a provider
is charging. Providers typically advertise that they begin
and end charging when an instance “starts” and “stops,”
but these terms are ambiguous and could correspond to
any of the many distinct timestamps in an instance life-
time. Figure 2 depicts some of the major events in an
instance lifetime. EC2, Rackspace, and GCE all pro-
vide Tlaunch timestamps, while only GCE offers addi-
tional timestamps for the times that instance CREATE and
DELETE API calls were issued and completed.

In our experiments, all other timestamps were col-
lected by polling the providers’ APIs (10 times per
second for EC2; once per second for Rackspace and
GCE, which rate-limited requests) to register when an
instance’s status changed. This method is inexact, how-
ever, due to the inherent jitter introduced by variable net-
work latency, server response time, and polling granu-
larity. This semantic gap between a provider’s and a
customer’s view of instance-lifetime events means that
a customer cannot be certain that their calculations (and
corresponding deployment decisions) are accurate.

For experiments on EC2, we determined that the in-

Value Min Median Avg Max SD
Trunning−Tlaunch 17 24 30 264 26

Tup−Trunning -159 0 -2 12 21
Tdown−Tterm -1 0 1 26 3

Table 3: Measured variability in EC2 instance lifetime events,
in seconds.
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Figure 4: Measured uptime Tdown−Tup for 272 EC2 instances
run with 3590 ≤ Tkill − Tlaunch ≤ 3600 versus the number of
hours billed.

terval Tkill −Trunning best represented billable time after
testing many other timestamp intervals and determining
that this had the strongest correlation to billed hours. We
used the 272 combined m1.small and t1.micro instance
runs from Section 2. In these executions, we ensured
that ∆ = Tkill − Trunning took on a value in the range of
3590–3600 seconds by controlling Tkill . Despite this nar-
row window, these runs demonstrated variability in the
relative timing of the various instance lifetime events on
EC2, as shown in Table 3. For example, the difference
Tup−Trunning is often negative, meaning an instance is up
and running before EC2 marks it as such.

Figure 4 shows a scatter plot relating Tdown−Tup (the
measured uptime) to whether the instance was billed for
two hours (plotted above the line) or one hour (below the
line), for the 272 instances. Within each half, instances
corresponding to each ∆ value are on the same row, start-
ing with 3590 and going up to 3600. We find several
trends. First, there exists a set of outliers around uptime
of 3750. These instances ran 2.5 minutes longer than re-
quested, and in one case such an instance was billed for
only an hour, meaning Amazon underbilled for the ac-
tual uptime. Second, for the bulk of the data points, we
see that while the average uptime is close to ∆, there is a
horizontal spread of points indicating a variability range
of approximately 10 seconds. Finally, we see that as ∆

increases, the percentage of instances charged two hours
increases.

We performed additional tests to more finely de-
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Figure 5: The fraction of EC2 instances of distinct types billed
for two hours versus Tkill −Tlaunch.

termine whether Tkill − Trunning provides good predic-
tion of billing (if not uptime), and if this holds for
a broader range of instance types. We launched 20
m1.small instances simultaneously using 20 accounts
and terminated ∆ seconds after Trunning, for each of ∆ ∈
{3585..3603}. We repeat this procedure with t1.micro
and with c1.medium instances using 20 and 10 instances
for each instance type per value of ∆, respectively. Fig-
ure 5 shows the fraction of instances billed for one
hour versus two across these tests. Surprisingly, the
c1.medium instances had the highest variance in the
number of hours billed. This data suggests that cus-
tomers should terminate their instances 13 seconds be-
fore Trunning + 3600i to ensure being billed for only i
hours, but only if they go out of their way to get an accu-
rate timestamp Trunning. The amount of uptime received,
however, will vary on the order of several minutes.

A bug in EC2 compute billing. We were intrigued by
the cases in Figure 5 with uptime greater than one hour
that were charged for only one hour. We also found that
if we terminated an instance early in its lifetime we were
occasionally not getting billed. To explore further, we
created a VM image with a minimal kernel with net-
work support that boots quickly, connects to our local
controller and frequently sends short messages with the
current timestamp. The first and last timestamps of suc-
cessful connections to our controller give uptime for the
instance.

We performed a series of runs where we launched this
image and sent a terminate API call exactly ∆ seconds
after Tlaunch for ∆ ∈ {2..20}, with 20 instances per value
of ∆. For ∆ ≤ 16 we got no usable uptime, but for each
of ∆ ∈ {17,18}, 1 out of 20 instances received approxi-
mately 116 seconds of free uptime, while for ∆ = 19, 4
of 20 instances received 117 seconds of unbilled, usable
uptime. For ∆ = 20, 6 of 20 instances received an aver-
age of 118 seconds of uptime, but 3 of these instances
were billed for an hour of usage each, indicating a race
condition in EC2’s infrastructure between the billing sys-

Send Receive
Setup Case % Reported % Reported

(1) Univ→ EC2 - 95.9%
(2) EC2→ Univ 94.4% -
(3) Zone X→ Zone X - -
(4) Zone X → Zone X

(public IP)
97.6% 97.2%

(5) Zone X→ Zone Y 97.1% 97.5%
(6) Reg X→ Reg Y 95.9% 96.8%

Table 6: Average ratios (in percent) of billed traffic volume to
measured traffic volume for the sender (second column) and re-
ceiver (third column). A “-” indicates tests for which no billing
occurred, which was correct relative to the EC2 billing model.

tem and the instance management system. This free time
is difficult to use economically, though, given the chance
of receiving a bill for a whole hour of usage.

4 Network Billing
A key challenge in predicting the bill for networking is
knowing how much a packet will cost. While GCE and
Rackspace have relatively simple network billing mod-
els, Amazon charges different rates for inbound and out-
bound traffic between instances and the Internet, to a
public IP in the same zone, to another zone, and to an-
other region. We perform six experiments on EC2 that
reflect the six possibilities. The results are shown in Ta-
ble 6: for “Univ → EC2” the sender was hosted in our
local university and the recipient in EC2; for “Zone X
→ Zone X” the sender and receiver are in the same zone
using private IP addresses (unless otherwise indicated),
etc. Cases (1) and (3) should be free according to EC2’s
pricing model, while the remaining four cases should be
billed. We perform three runs for each of the six config-
urations, and report the average percentage of network
traffic billed out of that measured by NetFilter in the in-
stance’s kernel. Billing data was measured from the de-
tailed CSV.

Compared to measuring filtered traffic in the kernel,
EC2 consistently underbills. In the case of Internet-
outbound traffic, which is the most expensive category of
network traffic, (case (2) in Table 6), EC2 undercharges
by an average of 5.6%. Across all experiments, EC2 un-
dercharges traffic by 3.4%.

We found that GCE and Rackspace network-traffic
billing was more predictable perhaps partly due to their
simpler network billing models, with two exceptions in
Rackspace. In 2 of 11 Rackspace instances we sent 1GB
from the instance to our local controller, and Rackspace
charged for 35MB and 125MB less than was success-
fully sent and received. This may indicate a bug in the
Rackspace network billing mechanism.

5 Storage Billing
Providers charge for block storage, both by the bytes
stored over time and per I/O operation (only EC2).



Similarly to billing for compute time, charges for vol-
ume allocation are sensitive to opaque volume creation
and deletion timestamps, while I/O billing is subject to
caching and aggregation that can happen between the
guest OS and the provider, making it impossible for a
customer to measure.

Storage charges. We tested GB-month storage on EC2,
GCE, and Rackspace by allocating volumes of a set size
and for a set period, and then comparing the expected
charge versus that reported on bills. In EC2 and GCE, the
bills were consistent with expected charges, and for the
sake of brevity we omit details. For Rackspace, however,
creating a 100 GB drive and then deleting it resulted in
charges that were 36.3% higher than expected. The rea-
son was a bug that we uncovered: delete operations can
hang if a volume has not first successfully “detached,”
leaving the volume unavailable yet still unfairly accruing
charges. We have notified Rackspace of this issue.

I/O charges in EC2. We perform reads and writes to-
taling 1 GB to a 100 GB EBS volume using fio with di-
rect I/O (in order to bypass caching by the guest OS)
and with varying block sizes. Figure 7 shows the ratio
between the number of reads (writes) made to the vol-
ume and the number of reads (writes) charged for across
a representative subset of block sizes. Across all exper-
iments, the number of measured operations is either the
same or higher than the number of charged operations by
up to a factor of 4.6, indicating we are billed for fewer
operations than our instance performs.

These discrepancies could be due to aggregation and
caching within EC2’s infrastructure, or simply under-
charging. To tease these apart, we performed additional
experiments in which, fixing the block size at 4096 bytes,
we read from and wrote to random locations within the
100 GB volume. For these tests, the EC2-reported I/Os
differed from instance-reported I/Os by only 0.8% and
0.2%, respectively, which suggests that EC2 is not un-
dercharging but instead aggregating requests (for writes)
or both aggregating and caching (for reads), which low-
ers costs but increases opacity of billing.

6 Conclusions
Our measurements surface a number of undesirable fea-
tures of today’s cloud billing ecosystem that arise at the
intersection of the billing model and implementation.
First, billing events mostly occur within the cloud in-
frastructure, making them largely unobservable to cus-
tomers. Second, billing systems are asynchronous and
make bills available long after the resource consump-
tion occurs. Finally, billing systems tend to aggregate
data across many events or instances into a single line
item. This suits the provider: it alleviates the need to re-
tain fine-grained information about usage and to invest
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Figure 7: Ratio of number of storage operations measured by
/proc/diskstats to number of operations billed by EC2.

in making bills available more quickly. We note that al-
though our study is a snapshot of these billing systems
at one moment in time and the systems are continuously
evolving, these characteristics reflect fundamental design
choices that we believe should be reconsidered.

We propose that providers adopt a transparent billing
model in which billing information is accessible, un-
derstandable, timely, and predictable. Concretely, we
believe cloud providers should offer a billing API that
exposes the provider’s current view of key resources:
compute time (including provider-captured start and stop
timestamps), network (total usage, broken down by traf-
fic category), and storage (both volume use start and stop
timestamps, and number of I/Os billed). Furthermore,
the API should include a valid-as-of timestamp if the in-
formation is not real-time.

Such an interface would enable a new paradigm of
cost-based computing, where customers could optimize
their deployments for cost in real time and accurately
audit their usage, gaining assurance that they are be-
ing billed accurately. Similarly, providers can vary their
prices in real time to control congestion. It would also
open access to an abundance of real-time resource-usage
data, which could be used for anomaly detection, ac-
countability, etc.

This sets a goal for cloud billing systems, and leaves
open several questions. In particular, given the enormous
scale and fine granularity of universal resource account-
ing and billing, what tradeoffs are inherent in exposing
a transparent billing API? How close to real-time can a
provider perform reporting, and at what expense? And,
if such an API can be exposed, what new applications
would that introduce? We believe these are fundamen-
tally important questions, the answers to which will be
of great value to both cloud providers and customers.
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