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*
Current hash function design paradigm

Hash 
function

But CR does not support usage for many 
settings!

Compression 
function

f
d

n n
Hf n

f is CR⇒ Hf is CR

One wants a transform H that is 
collision-resistance preserving (CR-Pr):

indifferentiable 
[MRH04]

Domain
extension
transform

M0 M1 |M|

IV f f f Hf(M)

E.g. H = MD+   (Merkle-Damgard w/str)

Used in MD4, MD5, 
SHA-1, SHA-256, etc.



Let H = MD+ and message M unknown to adversary

Hf 

X,|M|, Hf(M)

(U is unknown)M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

Extension attack

M <d>

IV f f Hf(M || |M| || X)

≈

So what?
Does not affect CR
But means that Hf does not “behave like” a RO

easy
Hf(M || |M| || X)

Hf(M)

X <2d>

f f

e.g. if |X| = |M| = d, then:



X,|M|, RO(M)

Hf 

(U is unknown)M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

Extension attack

≈

So what?
Does not affect CR
But means that Hf does not “behave like” a RO

hard
RO(M || |M| || X)

This is true even if f is a RO.

X,|M|, Hf(M)
easy

Hf(M || |M| || X)

Let H = MD+ and message M unknown to adversary



Hf 
M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

[CDMP05]:
• Hash functions widely used as ROs                    

e.g. RSA-OAEP [BR94],  RSA-PSS [BR96] 
used in PKCS#1 v2.1

• Should (minimally) validate this use 
assuming compression function f is a RO

≈

To that end they ask for domain extension 
transforms H which are (what we call)
pseudo-random-oracle preserving (PRO-Pr):

f     RO≈ ⇒ Hf    RO≈
indifferentiable 

[MRH04]



Hf 
M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

[CDMP05]:
• Hash functions widely used as ROs                    

e.g. RSA-OAEP [BR94],  RSA-PSS [BR96] 
used in PKCS#1 v2.1

• Should (minimally) validate this use 
assuming compression function f is a RO

≈

To that end they ask for domain extension 
transforms H which are (what we call)
pseudo-random-oracle preserving (PRO-Pr):

f     RO≈ ⇒ Hf    RO≈
indifferentiable 

[MRH04]

PRO’s only exist in the random oracle model

=



M0 M1 M2

Hf 
M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

≈
H = MD+ is not PRO-Pr (due to extension attack)

f f f

prefix free enc.

IV

M

f f fIV C

f f fIV

M0 M1 M2

g
f f fIV

0d M1 M2

f

Prefix-free MD Chop transform

NMAC construction HMAC construction

[CDMP05] present several new PRO-Pr transforms:



Hf 
M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

≈PRO-Pr is a desirable property: 
Important for usage of hash functions 

as ROs.

But, there is also danger in using 
PRO-Pr transforms...



The same hash functions will be used both as 
ROs and (just) as CR functions. 

f = RO ⇒ ⇒
It might seem so:

Hf is CR

PRO-Pr

Hf    RO ≈
Problem!

f = RO
When f is a real compression function, then

so above does not justify that Hf is CR

Will PRO-Pr transforms yield CR hash functions?



 PRO-Pr       CR-Pr

Hf 
M, U, 
RO(U)

hard RO(U || |U| || M )

(U is 
unknown)

≈

The problem is real

For each of 4 PRO-Pr transforms H 
proposed in [CDMP05] we show that:

   f such that
       f is CR but Hf is not CR
∃

In other words

!



Example: H = chop transform
C outputs first n-s bits
of its n bit input

We build a CR compression function f for which Hf is 
not CR.

M0 M1 M2

f f f0n C

0n            if x = 0n+d
h(x) || 1    otherwise{Let f(x) =

Claim 1: f is CR (assuming h is CR)



Example: H = chop transform
C outputs first n-s bits
of its n bit input

We build a CR compression function f for which Hf is 
not CR.

M0 M1 M2

f f f0n C

Claim 2: Hf is not CR

f C

0d

0n f f C

0d 0d

0n0n-s 0n-s

Collision!



Hf 

For CR, guarantee of transforms from 
[CDMP05] is worse than that of MD+

This speaks against standardizing any of the 
[CDMP05] transforms

What this means

Root of problem:
PRO-Pr provides guarantee of security 
only in the model where f = RO.
No guarantee in the standard model!



Hf 

Important for building hash functions 
used as ROs

PRO-Pr in review...

Does not guarantee Hf is CR when f is CR

PRO-Pr transforms are insufficient for building strong 
hash functions.

So what types of transforms 
should we use?



1. CR-Pr
2. PRO-Pr Hf     RO

Natural solution is to require H to be both

Hf 

Preserve both CR and PRO

f = RO ⇒ ≈
f is CR ⇒ Hf is CR

Solves the previous problems with (only) PRO-Pr 
transforms: single hash function good for both uses.



Digital signatures

Sign( Hf(M) ) 

Hf secure if f is CR

Random oracles

Hf secure if f = RO

Hf( . ) 
Alice

H is 
PRO-Pr, 
CR-Pr

H is just
PRO-Pr

Sign( Hf(M) ) 

Hf secure if f = ROHf secure if f = RO

Hf( . ) 
Alice



One can “patch” the [CDMP05] transforms to get them 
to be both CR-Pr and PRO-Pr:  add strengthening!

but...



Hf 

Hash functions have all kinds of applications:
CR functions

random oracles

message 
authentication

key derivation
near-collision 

resistant functionsone-way functions

others...

Want security guarantees for as many settings 
as possible



Two very important uses:
message authentication codes (MACs)
key derivation

These require that hash functions be keyed and are 
good PRFs. Does a CR-Pr, PRO-Pr H suffice?

Problem!

But as before, no guarantee for a real f. 

f = RO ⇒
PRO-Pr transforms again seem sufficient:

⇒ Hf(K || . ) is PRF

PRO-Pr

secret key K

Hf    RO≈



Hf 

Solution: use multi-property-preserving (MPP) 
transforms, which simultaneously preserve all 
properties of interest.
Minimally, we suggest building a single transform H 
that is simultaneously 

f is CR ⇒ Hf is CR1)    CR-Pr
2)    PRO-Pr Hf     ROf = RO ⇒ ≈

f is PRF⇒ Hf  is PRF3)    PRF-Pr



Current situation
Transform Security Example 

Applications

MD w/str CR-Pr digital 
signatures

[CDMP05] PRO-Pr ROs

HMAC/NMAC PRF-Pr PRF/MAC

Even if one f, must build many hash functions:
Standardize many hash functions
Complicates implementations



Using MPP approach
Transform Security Example 

Applications

H
CR-Pr digital 

signatures

PRO-Pr ROs

PRF-Pr PRF/MAC

Apply H to a single f to build one hash function 
good for many tasks.

Standardize just one hash function
Simplifies implementation choices, 
one hardware implementation needed



The EMD transform

IV1
IV2

ff f

M1 M2 M3

f
||

M4 || |M|

• Similar in design to NMAC [BCK96],              
Chain shift construction [MS05].

• Combines several techniques for 
preserving individual properties.



IV1
IV2

The EMD transform

ff f

M1 M2 M3

f
||

M4 || |M|

enveloping
domain separation

(IV1     IV2)!=

EMD is CR-Pr

MD
strengthening

EMD is PRO-Pr

K1
K2

EMD is PRF-Pr



On query SBf (X):

Y
$← {0, 1}n

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU)← Y
ret Y

On query SBg(X):
Parse X into V || U || W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 and
M1 · · ·Mi ← GetNode(V ) then

ret F(M1 · · ·MiU)
ret Y

$← {0, 1}n

On query SA(X):

Y
$← {0, 1}n

Parse X into V || U || W s.t.
|V | = n, |U | = d− n, |W | = n

if W = IV 2 then
if M1 · · ·Mi ← GetNode(V ) then

ret F(M1 · · ·MiU)
else

ret Y
Parse X into U || V s.t. |U | = d, |V | = n
if V = IV 1 then NewNode(U)← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU)← Y
ret Y

Figure 4: Pseudocode for simulators SB (utilized in the proof of Lemma 5.1) and SA (utilized in the proof
of Theorem 5.2).

by M1, M2, etc. and (2) add an edge labeled by U from this found node to a new node labeled
by Y . The notation GetNode(V ) for V ∈ {0, 1}n returns the sequence of edge labels on a path
from the root to a node labeled by V (if there are duplicate such nodes, return an arbitrary one, if
there are none then return false). The tree below is an example after several queries. For example,
a query SBf (0d || IV 1) adds the left child of the root; the random value Y1 is returned to the
adversary. If the next query is SBf (0d || Y1), then the simulator associates these two queries by
producing the child of Y1, labeled accordingly. Finally, if the adversary queries SBg(Y2 || M || IV 2)
(for any M ∈ {0, 1}d−n) the simulator searches the tree for a node labeled Y2, and finding one,
returns F(0d || 0d || M) (using the edge labels on the path from the root to form this query). Note
that if the low bits are not IV 2, the simulator just returns random bits. Intuitively, the simulator
will succeed whenever no Y values collide and the adversary does not predict a Y value.

Y1 Y3

1d

1d

Y4 Y5

0d

0d

IV 1

Y2

0d

The simulator is discussed further in Section 6. Now we use Lemma 5.1 to prove that EMD is
PRO-Pr.

Theorem 5.2 [EMD is PRO-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}n with IV 1 $= IV 2. Let
f = RFd+n,n be a random oracle. Let A be an adversary that asks at most qL left queries (each of
length no larger than ld bits), q1 right queries with lowest n bits not equal to IV 2, q2 right queries
with lowest n bits equal to IV 2, and runs in time t. Then

Advpro
EMD,SA(A) ≤ (qL + q2)2 + q2

1 + q2q1

2n
+

lq2
L

2n
.

where the simulator SA, defined in Fig. 4, makes qSA ≤ q2 queries and runs in time O(q2
1 + q2q1).

14

Game G0

A left query L(M):

000 M1 · · ·Mk
d←M ; Y0 ← IV 1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV 2 then
004 Yi ← Sample-fIV 2(Mi || Yi−1)
005 Yk ← Sample-fIV 2(Yk−1 || Mk || IV 2)
006 ret Yk

A right query Rf (X):
100 Parse X into U || V s.t. |U | = d, |V | = n
101 if V = IV 2 then ret Sample-fIV 2(X)
102 ret Sample-f(X)

Subroutine Sample-f(X):

200 if f[X] = ⊥ then f[X]
$← {0, 1}n

201 ret f[X]

Subroutine Sample-fIV 2(X):

300 if fIV 2[X] = ⊥ then fIV 2[X]
$← {0, 1}n

301 ret fIV 2[X]

Game G1 Game G2

A left query L(M):

000 M1 · · ·Mk
d←M ; Y0 ← IV 1

001 for 1 ≤ i ≤ k − 1
002 Yi ← Sample-f(Mi || Yi−1)
003 if Yi−1 = IV 2 then
004 bad← true
005 Yi ← Sample-fIV 2(Mi || Yi−1)

006 Yk ← Sample-fIV 2(Yk−1 || Mk || IV 2)
007 ret Yk

A right query Rf (X):
100 ret Sample-f(X)

A right query RIV 2(X):
400 ret Sample-fIV 2(X)

Subroutine Sample-f(X):

200 if f[X] = ⊥ then f[X]
$← {0, 1}n

201 ret f[X]

Subroutine Sample-fIV 2(X):

500 if fIV 2[X] = ⊥ then fIV 2[X]
$← {0, 1}n

501 ret fIV 2[X]

Figure 5: Games utilized in proof of Theorem 5.2.

5.3 EMD is PRF-Pr

We utilize the key-via-IV strategy to create a keyed version of our transform EMDe
K1,K2

(M) =
e◦(K1,K2,M) (for some PRF e). The resulting scheme is very similar to NMAC, which we know to
be PRF-Pr [2]. Because our transform allows direct adversarial control over a portion of the input
to the envelope function, we can not directly utilize the proof of NMAC (which assumes instead
that these bits are fixed constants). However, the majority of the proof of NMAC is captured by
two lemmas, The first (Lemma 3.1 [2]) shows (informally) that the keyed MD iteration is unlikely
to have outputs that collide. The second lemma (Lemma 3.2 [2]) shows that composing the keyed
MD iteration with a separately keyed PRF yields a PRF. We omit the details.

Theorem 5.3 [EMD is PRF-Pr] Fix n, d and let e: {0, 1}d+n → {0, 1}n be a function family
keyed via the low n bits of its input. Let A be a prf-adversary against keyed EMD using q queries
of length at most m blocks and running in time t. Then there exists prf-adversaries A1 and A2

against e such that

Advprf
EMDe

K1,K2
(A) ≤ Advprf

e (A1) +
(

q

2

) [
2m · Advprf

e (A2) +
1
2n

]
where A1 utilizes q queries and runs in time at most t and A2 utilizes at most two oracle queries
and runs in time O(mTe) where Te is the time for one computation of e.

6 Proof of Lemma 5.1

Fix n and d with d ≥ n, some n-bit constant IV , and let f, g = RFd+n,n. To simplify the proof ex-
position slightly, we prove that a more general version of gf+ is a pseudorandom oracle, specifically
gf+(P1 || P2) = g(f+(IV , P1) || P2) for any strings P1 ∈ D+ and P2 ∈ D (i.e., we let the adversary

16

On query SBf (X):

Y
$
← {0, 1}n

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U) ← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU) ← Y
ret Y

On query SBg(X):

Parse X into V || U || W s.t.
|V | = n, |U | = d − n, |W | = n

if W = IV 2 and
M1 · · ·Mi ← GetNode(V ) then

ret F(M1 · · ·MiU)

ret Y
$
← {0, 1}n

On query SA(X):

Y
$
← {0, 1}n

Parse X into V || U || W s.t.
|V | = n, |U | = d − n, |W | = n

if W = IV 2 then
if M1 · · ·Mi ← GetNode(V ) then

ret F(M1 · · ·MiU)
else

ret Y
Parse X into U || V s.t. |U | = d, |V | = n
if V = IV 1 then NewNode(U) ← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU) ← Y
ret Y

Figure 4: Pseudocode for simulators SB (utilized in the proof of Lemma ??) and SA (utilized in the proof
of Theorem 5.2).

returns F(0d || 0d || M) (using the edge labels on the path from the root to form this query). Note
that if the low bits are not IV 2, the simulator just returns random bits. Intuitively, the simulator
will succeed whenever no Y values collide and the adversary does not predict a Y value.

Y1 Y3

1d

1d

Y4 Y5

0d

0d

IV 1

Y2

0d

The simulator is discussed further in Section 6. Now we use Lemma ?? to prove that EMD is
PRO-Pr.

Theorem 5.1 [EMD is CR-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}n with IV 1 $= IV 2. Let
f : {0, 1}n+d → {0, 1}n. Let A be a CR adversary that runs in time tA. Then there exists an
adversary B such that

Advcr
EMD(A) ≤ Advcr

f (B)

where B runs in time t ≤ tA + O(l) where l is the number of blocks in the longer message output
by A.

Theorem 5.2 [EMD is PRO-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}n with IV 1 $= IV 2. Let
f = RFd+n,n be a random oracle. Let A be an adversary that asks at most qL left queries (each of
length no larger than ld bits), q1 right queries with lowest n bits not equal to IV 2, q2 right queries
with lowest n bits equal to IV 2, and runs in time t. Then

Advpro
EMD,SA(A) ≤

(qL + q2)2 + q2
1 + q2q1

2n
+

lq2
L

2n
.

where the simulator SA, defined in Fig. 4, makes qSA ≤ q2 queries and runs in time O(q2
1 + q2q1).

14



Transform CR-Pr PRO-Pr PRF-Pr Efficiency 
|M| = b >= d

EMD [BR06] [BR06] [BR06] [ (b+1+64+n) / d ]

Plain MD [ (b+1) / d ]

MD w/str [D89,M89] [ (b+1+64) / d ]

Prefix-free 
MD [CDMP05] [BCK96] [ (b+1) / (d-1) ]

Chop 
solution [CDMP05] ? [ (b+1) / d ]

NMAC 
construction [CDMP05] ? 1 + [ (b+1) / d ]

HMAC 
construction [CDMP05] ? 2 + [ (b+1) / d ]

?

*



CR

PRO
PRF

Hf 

What about other properties?

Design trade-offs: security versus efficiency

Some properties implied by 
others (e.g., PRF => MAC)

MAC
Should only worry about 
useful properties

FOO

Choices to make...

?



We propose multi-property-preserving transforms for 
building the next generation of hash functions

Hf 

Summary

Minimally a transform H should be
CR-Pr, PRO-Pr, and PRF-Pr

Enables building a single hash function that is 
good for a variety of applications

We point out that previous PRO-Pr transforms are 
not CR-Pr and thus give worse guarantees than MD+

We describe an efficient MPP transform EMD
(Enveloped Merkle-Damgard)
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